Меню

Если при токе дает во внешнюю цепь мощность

Как найти мощность источника тока в цепи

Цепь постоянного тока

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви, состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы – точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры, не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа: алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа: алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .

Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

Напряжение на источнике тока (на сопротивлении ) равно

Затем можно найти токи ветвей

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

Из первого уравнения выразим , а из третьего

Тогда из второго уравнения получим

Из уравнений закона Ома запишем

Нетрудно убедиться, что выполняется второй закон Кирхгофа

Подставляя численные значения, получим

Эти же результаты можно получить, используя только закон Ома.

Мощность в цепи постоянного тока

Действующие в цепи идеальные источники тока и (или) напряжения отдают мощность в подключенную к ним цепь (нагрузку). Для цепи на рис. 6.1а отдаваемая идеальным источником напряжения мощность равна

а в цепи на рис. 6.2а идеальный источник тока отдает в нагрузку мощность

Подключенная к источнику внешняя резистивная цепь потребляет от него мощность, преобразуя ее в другте виды энергии, чаще всего в тепло.

Если через сопротивление протекает ток , а приложенное к нему напряжение равно , то для потребляемой сопротивлением мощности получим

С учетом уравнений закона Ома (6.1) можно записать

Если в цепи несколько сопротивлений, то сумма потребляемых ими мощностей равна суммарной мощности, отдаваемой в цепь всеми действующими в ней источниками. Это условие баланса мощностей.

Например, для цепи на рис. 6.3 в общем виде получим

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9005 – | 7249 – или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Цепь постоянного тока

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви, состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы – точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры, не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа: алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа: алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .

Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

Напряжение на источнике тока (на сопротивлении ) равно

Затем можно найти токи ветвей

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

Из первого уравнения выразим , а из третьего

Тогда из второго уравнения получим

Из уравнений закона Ома запишем

Нетрудно убедиться, что выполняется второй закон Кирхгофа

Подставляя численные значения, получим

Эти же результаты можно получить, используя только закон Ома.

Мощность в цепи постоянного тока

Действующие в цепи идеальные источники тока и (или) напряжения отдают мощность в подключенную к ним цепь (нагрузку). Для цепи на рис. 6.1а отдаваемая идеальным источником напряжения мощность равна

а в цепи на рис. 6.2а идеальный источник тока отдает в нагрузку мощность

Подключенная к источнику внешняя резистивная цепь потребляет от него мощность, преобразуя ее в другте виды энергии, чаще всего в тепло.

Читайте также:  Как найти силу тока в треугольнике

Если через сопротивление протекает ток , а приложенное к нему напряжение равно , то для потребляемой сопротивлением мощности получим

С учетом уравнений закона Ома (6.1) можно записать

Если в цепи несколько сопротивлений, то сумма потребляемых ими мощностей равна суммарной мощности, отдаваемой в цепь всеми действующими в ней источниками. Это условие баланса мощностей.

Например, для цепи на рис. 6.3 в общем виде получим

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8447 – | 7339 – или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Полная мощность источника тока:

P полн = P полезн + P потерь ,

где P полезн — полезная мощность, P полезн = I 2 R ; P потерь — мощность потерь, P потерь = I 2 r ; I — сила тока в цепи; R — сопротивление нагрузки (внешней цепи); r — внутреннее сопротивление источника тока.

Полная мощность может быть рассчитана по одной из трех формул:

P полн = I 2 ( R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,

где ℰ — электродвижущая сила (ЭДС) источника тока.

Полезная мощность — это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.

Полезная мощность может быть рассчитана по одной из трех формул:

P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,

где I — сила тока в цепи; U — напряжение на клеммах (зажимах) источника тока; R — сопротивление нагрузки (внешней цепи).

Мощность потерь — это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.

Мощность потерь, как правило, рассчитывается по формуле

P потерь = I 2 r ,

где I — сила тока в цепи; r — внутреннее сопротивление источника тока.

При коротком замыкании полезная мощность обращается в нуль

так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.

Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле

где ℰ — электродвижущая сила (ЭДС) источника тока; r — внутреннее сопротивление источника тока.

Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:

Максимальное значение полезной мощности:

P полезн max = 0,5 P полн ,

где P полн — полная мощность источника тока; P полн = ℰ 2 / 2 r .

В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:

P полезн max = ℰ 2 4 r .

Для упрощения расчетов полезно помнить два момента:

  • если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой
  • если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение . Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:

где ℰ — ЭДС источника тока; r — внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой

где i — сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:

I 2 = ℰ R 2 + r = ℰ 2 r ;

в этом случае в цепи выделяется максимальная полезная мощность:

P полезн max = I 2 2 R 2 = I 2 2 r .

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .

Для того чтобы найти силу тока I 2 , запишем систему уравнений:

i = ℰ r , I 2 = ℰ 2 r >

и выполним деление уравнений:

I 2 = i 2 = 12 2 = 6,0 А.

Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:

I 1 = ℰ R 1 + r , i = ℰ r >

и выполним деление уравнений:

I 1 i = r R 1 + r .

r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.

Рассчитаем максимальную полезную мощность:

P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Источник

ДОМОСТРОЙСантехника и строительство

  • Четверг, 12 декабря 2019 1:08
  • Автор: Sereg985
  • Прокоментировать
  • Рубрика: Строительство
  • Ссылка на пост
  • https://firmmy.ru/

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = IΔt. Электрическое поле на выделенном участке совершает работу

ΔA = (φ1 – φ2)Δq = Δφ12IΔt = UIΔt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.

Если обе части формулы

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение

RI 2 Δt = UIΔt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

ΔQ = ΔA = RI 2 Δt.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде

(R + r)I = ε.

Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

RI 2 Δt + rI 2 Δt = IΔt = ΔAст.

Первый член в левой части ΔQ = RI 2 Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = rI 2 Δt – тепло, выделяющееся внутри источника за то же время.

Выражение IΔt равно работе сторонних сил ΔAст, действующих внутри источника.

При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).

ΔQ + ΔQист = ΔAст = IΔt

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, на и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна

Во внешней цепи выделяется мощность

Отношение равное

называетсякоэффициентом полезного действия источника.

На рис. 1.4.13 графически представлены зависимости мощности источника Pист , полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной , и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при ) до (при R = 0).

Рисунок 1.4.13 Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока.

Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax , равная

достигается при R = r. При этом ток в цепи

а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, то есть при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ:

Соберите на экране цепь, показанную на рис. 2. Для этого сначала щелкните левой кнопкой мыши над кнопкой э.д.с. в нижней части экрана. Переместите маркер мыши на рабочую часть экрана, где расположены точки. Щелкните левой кнопкой мыши в рабочей части экрана, где будет расположен источник э.д.с.

Читайте также:  Ап 104 указатель тока

Разместите далее последовательно с источником резистор, изображающий его внутреннее сопротивление (нажав предварительно кнопку в нижней части экрана) и амперметр (кнопка там же). Затем расположите аналогичным образом резисторы нагрузки и вольтметр , измеряющий напряжение на нагрузке.

Подключите соединительные провода. Для этого нажмите кнопку провода внизу экрана, после чего переместите маркер мыши в рабочую зону схемы. Щелкайте левой кнопкой мыши в местах рабочей зоны экрана, где должны находиться соединительные провода.

4. Установите значения параметров для каждого элемента. Для этого щелкните левой кнопкой мыши на кнопке со стрелкой . Затем щелкните на данном элементе. Подведите маркер мыши к движку появившегося регулятора, нажмите на левую кнопку мыши и, удерживая ее в нажатом состоянии, меняйте величину параметра и установите числовое значение, обозначенное в таблице 1 для вашей бригады.

Таблица 1. Исходные параметры электрической цепи

Номер бригады
Е, В 10,0 9,5 9,0 8,5 8,0 8,5 9,0 9,5
r, Ом 4,8 5,7 6,6 7,5 6,4 7,3 8,2 9,1

5. Установите сопротивление внешней цепи 2 Ом, нажмите кнопку «Счёт» и запишите показания электроизмерительных приборов в соответствующие строки таблицы 2.

6. Последовательно увеличивайте с помощью движка регулятора сопротивление внешней цепи на 0,5 Ом от 2 Ом до 20 Ом и, нажимая кнопку «Счёт», записывайте показания электроизмерительных приборов в таблицу 2.

7. Вычислите по формулам .

.

= I 2 (R+r) = IE

. (9)

Р1, Р2, Рполн и h для каждой пары показаний вольтметра и амперметра и запишите рассчитанные значения в табл.2.

8. Постройте на одном листе миллиметровой бумаге графики зависимости P1 = f(R), P2 = f(R), Pполн=f(R), h = f (R) и U = f(R).

9. Рассчитайте погрешности измерений и сделайте выводы по результатам проведённых опытов.

Таблица 2. Результаты измерений и расчётов

R, Ом 2,0 2,5 3,0
U, В
I, А
P1, Вт
P2, ВТ
Pполн, ВТ
h

Вопросы и задания для самоконтроля

1. Запишите закон Джоуля-Ленца в интегральной и дифференциальной формах.

2. Что такое ток короткого замыкания?

3. Что такое полная мощность?

4. Как вычисляется к.п.д. источника тока?

5. Докажите, что наибольшая полезная мощность выделяется при равенстве внешнего и внутреннего сопротивлений цепи.

6. Верно ли утверждение, что мощность, выделяемая во внутренней части цепи, постоянна для данного источника?

7. К зажимам батарейки карманного фонаря присоединили вольтметр, который показал 3,5 В.

8. Затем вольтметр отсоединили и на его место подключили лампу, на цоколе которой было написано: Р=30 Вт, U=3,5 В. Лампа не горела.

9. Объясните явление.

10.При поочерёдном замыкании аккумулятора на сопротивления R1 и R2 в них за одно и то же время выделилось равное количество тепла. Определите внутреннее сопротивление аккумулятора.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8815 — | 7171 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

07.06.2019

5 июня Что порешать по физике

30 мая Решения вчерашних ЕГЭ по математике

Неразветвлённая электрическая цепь состоит из источника постоянного тока и внешнего сопротивления. Как изменятся при уменьшении внутреннего сопротивления источника следующие величины: сила тока во внешней цепи; мощность, выделяющаяся на внешнем сопротивлении, и электродвижущая сила источника?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины.

Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА ЕЁ ИЗМЕНЕНИЕ

А) Сила тока во внешней цепи

Б) Мощность, выделяющаяся на внешнем сопротивлении

В) Электродвижущая сила источника

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А) По закону Ома сила тока в цепи где — сопротивление внешней цепи, — сопротивление источника тока. Из формулы видно, что при уменьшении внутреннего сопротивления источника тока, сила тока в цепи возрастёт.

Б) Мощность, выделяющаяся на внешнем сопротивлении При уменьшении внутреннего сопротивления источника тока мощность выделяющаяся на внешнем сопротивлении возрастает.

В) ЭДС источника не зависит от его внутреннего сопротивления.

Тестирование онлайн

Закон Ома для замкнутой цепи

Замкнутая (полная) электрическая цепь состоит из источника тока и сопротивления.

Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним. ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r.

1) Напряжение на зажимах источника, а соответственно и во внешней цепи

,
где величина падение напряжения внутри источника тока.

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Коэффициент полезного действия

Мощность, выделяемая на внешнем участке цепи, называется полезной

При условии R=r мощность, выделяемая во внешней цепи, максимальная для данного источника и равна

Полная мощность — сумма полезной и теряемой мощности

Коэффициент полезного действия источника тока — отношение полезной мощности к полной

Источник ЭДС

Для существования постоянного тока в цепи необходимо непрерывно разделять электрические заряды, которые под действием сил Кулона стремятся соединиться. Для этого необходимы сторонние силы. ЭДС характеризует действие этих сторонних сил. А сама эта работа осуществляется внутри источников ЭДС. Электрические заряды внутри источников ЭДС движутся против кулоновских сил под воздействием сторонних сил.

Сравнивая электрический ток с течением жидкости в трубах, можно сказать, что источник работает, как насос, который подает воду из нижнего резервуара в верхний, из которого она под действием силы тяжести стекает в нижний резервуар.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока из-за наличия внутреннего сопротивления.

В настоящее время выпускают множество различных источников ЭДС — от маленьких батареек для часов до генераторов.

Внутри источника тока происходит разделение зарядов из-за процессов, происходящих внутри источника, например, химических процессов.

Гальванический элемент — химический источник тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите (батарейки, аккумуляторы).

Генераторы — создают ток за счет расходования механической энергии.

Термоэлементы — используют энергию теплового движения заряженных частиц.

Фотоэлементы — создают ток за счет энергии света.

Соединение источников тока*

Рассмотрим n одинаковых источников ЭДС

Правила Кирхгофа**

Для расчета сложных разветвленных цепей, которые нельзя свести к эквивалентной цепи, используют правила Кирхгофа:

1) Алгебраическая сумма сил токов, сходящихся в узле равна нулю.

2) Алгебраическая сумма падений напряжений в любом простом замкнутом контуре равна алгебраической сумме ЭДС, которые есть в этом контуре.

Источник

Мощность, выделяемая во внешней цепи с потребителями. 10–11-й классы

С.Н.КАРТАШОВ,
с. Маис, Пензенская обл.

Мощность, выделяемая во внешней цепи с потребителями

Решение задач на экстремум с компьютерной поддержкой

Предлагаемые задачи рассматриваются с учениками 10-х и 11-х классов на заседании школьного физического кружка. Они требуют знаний по теме «Законы постоянного тока», умения исследовать функции на экстремум при помощи производной, а также навыков программирования на компьютере.

ЗАДАЧА 1. Найдите зависимость мощности, выделяемой во внешней цепи, от числа одинаковых потребителей (лампочек), соединённых параллельно. ЭДС источника , его внутреннее сопротивление r.

Пусть сопротивления всех лампочек одинаковы R1 = R2 = . = Rn, P – мощность, выделяемая во внешней цепи, P1 – мощность, выделяемая на каждой лампочке. Очевидно, что P = nP1; P1 = I1 2 R1, где I1 – ток, проходящий через каждую лампочку.

Сила тока в неразветвлённой цепи:

Применяя первое правило Кирхгофа, имеем

С учётом (2) имеем для мощности

Полная мощность, выделяемая во внешней цепи:

Нетрудно заметить , что если n , то P 0. Это означает, что при неограниченном увеличении количества лампочек мы не достигнем бесконечного увеличения мощности, выделяемой во внешней цепи. Напротив, мощность будет стремиться к нулю.

Из формулы (3) следует также, что если r 0, то P n 2 /R. То есть, если источник тока идеален (r = 0), то мощность возрастает прямо пропорционально числу потребителей в цепи. Но внутреннее сопротивление источника тока не может быть равно нулю, поэтому достигнуть бесконечного увеличения мощности во внешней цепи за счёт увеличения числа потребителей невозможно. Напротив, достигнув максимума, мощность, выделяемая во внешней цепи, начнёт уменьшаться с ростом потребителей.

Для получения полной картины зависимости мощности Р от количества потребителей n, можно предложить учащимся построить график зависимости P(n) на компьютере ( = 20 В, r = 0,5 Ом, R1 = 100 Ом). В рубрике «Дополнительные материалы» на сайте газеты http://fiz.1september.ru приводим авторскую компьютерную программу WATT для построения вышеупомянутой зависимости (среда программирования QBasic, компьютер Celeron1300).

Читайте также:  Какого устройство простейшего генератора переменного тока

Изменяя внутреннее сопротивление r при неизменных и R1, делаем вывод: мощность P, выделяемая во внешней цепи, убывает с ростом r. Изменяя R1 при неизменных и r, делаем вывод: от сопротивления одной лампочки максимум мощности P не зависит. Этот максимум сдвигается вправо при увеличении R1 и сдвигается влево при уменьшении R1. Число ламп в цепи, при котором наблюдается максимум мощности, равно nmax = R1/r. То есть мощность, выделяемая во внешней цепи, максимальна, если внутреннее сопротивление источника тока равно внешнему сопротивлению цепи: r = R1/ nmax. Расчётные результаты отлично согласуются с результатами следующей, похожей, задачи.

ЗАДАЧА 2. При каком значении R мощность, выделяемая во внешней цепи, максимальна? ЭДС источника тока , внутреннее сопротивление r.

Получим формулу зависимости мощности P, выделяемой во внешней цепи, от внешнего сопротивления R и исследуем функцию P(r) на экстремум при помощи производной.

По закону Ома для полной цепи, ток I =/(R + r), мощность, выделяемая во внешней цепи:

Найдём критические точки из условия P’ = 0:

Имеем две критические точки R = –r и R = r . Но т.к. R > 0, то R = –r не имеет смысла. Производная P’ меняет знак с «+» на «–» в точке R = r, следовательно, R = r – точка минимума.

Итак, мощность максимальна, если R = r, т.е. внутреннее сопротивление источника тока равно внешнему сопротивлению. Это означает, что применительно к задаче 1 максимум мощности наблюдается при R = r, но т.к. сопротивление n одинаковых ламп равно R = R1/n, то r = R1/n, или n = nmax = R1/r.

Рассчитаем максимум мощности, используя формулу (3) и условие r = R1/n:

При = 12 В, r = 0,4 Ом и R1= 20 Ом имеем nmax = R1/r = 50 ламп.

Согласно формуле (4), Pmax = 90 Вт. Всё это очень хорошо согласуется с результатами компьютерного эксперимента. Кроме того, из этой формулы следует, что максимум мощности зависит от внутреннего сопротивления обратно пропорционально, в чём легко убедиться, используя компьютерную программу WATT, приведённую на сайте газеты http://fiz.1september.ru.

В заключение необходимо сказать, что все выше приведённые выкладки, а также результаты, полученные с помощью компьютерной программы для цепей постоянного тока, справедливы и для цепей переменного тока.

Возможен более современный подход, если использовать для моделирования таблицу МicrosoftExcel. Если R – внешнее сопротивление цепи, то Построим график для тех же данных: 1 = 20 В, r = 0,5 Ом, меняя R от 0,1 до 2,7 Ом с шагом 0,1 Ом. Для этого в ячейку B4 введём формулу =$B$1^2*A4/(A4+$B$2)^2 и скопируем её в ячейки В5–В30. Графики, построенные с помощью таблицы Excel и программы WATT, совпадают (максимум мощности 200 Вт получается, если внешнее сопротивление цепи равно внутреннему сопротивлению источника тока). В рубрике «Дополнительные материалы» к № 9/2008 на сайте газеты приведена программа «Мощность», аналогичная программе WATT, но на более продвинутом языке VisualBasic6.0, результат расчёта с её помощью, а также таблица МicrosoftExcel.

Сергей Николаевич Карташов – учитель физики высшей квалификационной категории, выпускник физфака МПГУ им. В.И.Ленина 1993 г. Педагогический стаж 14 лет. Ученики Сергея Владимировича занимают призовые места на районных олимпиадах по физике и математике. Педагогическое кредо: моделирование физических процессов на компьютере, индивидуальная работа с сильными детьми. Один закончил физфак МГУ им. М.В.Ломоносова, ещё один учится в университете им. Н.Э.Баумана. В 2002 г. Сергей Владимирович был награждён почётной грамотой МОиН РФ. Женат, сыну 3,5 года. Хобби: шахматы, решение олимпиадных задач по физике и математике, кулинария.

Источник

Физика

Полная мощность источника тока:

P полн = P полезн + P потерь ,

где P полезн — полезная мощность, P полезн = I 2 R ; P потерь — мощность потерь, P потерь = I 2 r ; I — сила тока в цепи; R — сопротивление нагрузки (внешней цепи); r — внутреннее сопротивление источника тока.

Полная мощность может быть рассчитана по одной из трех формул:

P полн = I 2 ( R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,

где ℰ — электродвижущая сила (ЭДС) источника тока.

Полезная мощность — это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.

Полезная мощность может быть рассчитана по одной из трех формул:

P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,

где I — сила тока в цепи; U — напряжение на клеммах (зажимах) источника тока; R — сопротивление нагрузки (внешней цепи).

Мощность потерь — это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.

Мощность потерь, как правило, рассчитывается по формуле

P потерь = I 2 r ,

где I — сила тока в цепи; r — внутреннее сопротивление источника тока.

При коротком замыкании полезная мощность обращается в нуль

так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.

Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле

где ℰ — электродвижущая сила (ЭДС) источника тока; r — внутреннее сопротивление источника тока.

Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:

Максимальное значение полезной мощности:

P полезн max = 0,5 P полн ,

где P полн — полная мощность источника тока; P полн = ℰ 2 / 2 r .

В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:

P полезн max = ℰ 2 4 r .

Для упрощения расчетов полезно помнить два момента:

  • если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой
  • если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение . Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:

где ℰ — ЭДС источника тока; r — внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой

где i — сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:

I 2 = ℰ R 2 + r = ℰ 2 r ;

в этом случае в цепи выделяется максимальная полезная мощность:

P полезн max = I 2 2 R 2 = I 2 2 r .

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .

Для того чтобы найти силу тока I 2 , запишем систему уравнений:

i = ℰ r , I 2 = ℰ 2 r >

и выполним деление уравнений:

I 2 = i 2 = 12 2 = 6,0 А.

Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:

I 1 = ℰ R 1 + r , i = ℰ r >

и выполним деление уравнений:

I 1 i = r R 1 + r .

r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.

Рассчитаем максимальную полезную мощность:

P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Источник



Исследование зависимости мощности и КПД источника тока от внешней нагрузки

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R® эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R Будет полезно почитать по теме:

Источник

Если при токе дает во внешнюю цепь мощность

Мощность, выделяемая на внешнем участке цепи, называется полезной мощностью

Закон Ома можно записать в следующем виде

По закону Джоуля-Ленца

Q=I 2 Rt+I 2 rt=I 2 (R+r)t


Так как Аст= Q, то qe= Ite= I 2 (R+r)t и e= I(R+r). Отсюда получаем закон Ома для замкнутой цепи

Сила тока в замкнутой цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна полному сопротивлению цепи.

Если сопротивление внешней цепи стремится к нулю, то в цепи возникает максимально возможный ток, который называется током короткого замыкания.

Это значит, что ЭДС источника равна сумме падений напряжений на внешнем и внутреннем участках замкнутой цепи.

Полная мощность источника


Мощность, выделяемая на внутреннем сопротивлении в источнике тока, называется теряемой мощностью


Коэффициент полезного действия источника тока h равен отношению полезной мощности Рпол к полной мощности Р

2. Радиоактивность. Виды радиоактивных излучений, их свойства. Радиоактивность — это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто опытным путем французским ученым Анри Беккерелем в 1896 г. для солей урана. Беккерель заметил, что соли урана засвечивают завернутую во много слоев фотобумагу невидимым проникающим излучением.
Английский физик Э. Резерфорд исследовал радиоактивное излучение в электрических и магнитных полях и открыл три составляющие этого излучения, которые были названы а-, B-, у-излучением (рис. 54).

а-Распад представляет собой излучение а-частиц (ядер гелия) высоких энергий. При этом масса ядра уменьшается на 4 единицы, а заряд — на 2 единицы.
B-Распад — излучение электронов, заряд которых возрастает на единицу, массовое число не изменяется.
у-Излучение представляет собой испускание возбужденным ядром квантов света высокой частоты. Параметры ядра при у-излучении не меняются, ядро лишь переходит в состояние с меньшей энергией. Распавшееся ядро тоже радиоактивно, т. е. происходит цепочка последовательных радиоактивных превращений. Процесс распада всех радиоактивных элементов идет до свинца. Свинец — конечный продукт распада.

Читайте также:  Какого устройство простейшего генератора переменного тока

3. Задача на электромагнитные явления.

В проводящей шине длиной 10 м. сила тока равна 7000А. Какова индукция однородного магнитного поля, силовые линии которого перпендикулярны шине, если на нее действует сила Ампера 126 кН?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Исследование зависимости мощности и КПД источника тока от внешней нагрузки

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R® эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R Будет полезно почитать по теме:

Читайте также:  Применение трансформатор переменного тока кратко

Источник

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

Рассмотрим полную цепь постоянного тока, состоящую из источника с электродвижущей силой Е , внутренним сопротивлением r и внешнего однородного участка с сопротивлением R . Закон Ома для полной цепи записывается в виде

Умножив обе части этой формулы на Δ q = I Δ t , мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

Работа кулоновских сил Δ A кул, действующих во всей замкнутой цепи (внешней и внутренней) равна работе сторонних сил Δ A ст, действующих внутри источника.

Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

Во внешней цепи выделяется мощность

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

называется коэффициентом полезного действия источника .

На рисунке графически представлены зависимости мощности источника P ист , полезной мощности P , выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I .

Для источника с ЭДС, равной Е, и внутренним сопротивлением r ток в цепи может изменяться в пределах от I = 0 при R = ∞ , до

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

Зависимость мощности источника P ист, мощности во внешней цепи P и КПД источника η от силы тока.

Из приведенных графиков видно, что максимальная мощность во внешней цепи P max, равная

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

достигается при R = r. При этом ток в цепи

Зависимость мощности источника, мощности во внешней цепи и КПД источника от силы тока

а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, т. е. при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль.

«Элементарная Физика» на YouTube — интересные факты, законы физики, примеры решения задач в доступной и увлекательной форме

Источник

Adblock
detector