Виды импульсных преобразователей напряжения

Преобразователи напряжения импульсные

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Принцип действия

ИПН 24-12

Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.

Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:

  • Закрыт, и не пропускает электрический ток;
  • Открыт, и имеет минимальное проходное сопротивление.

При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:

  1. Индуктивность (катушках);
  2. Конденсаторах.

Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:

  1. Качественно изолировать вход от выхода;
  2. Получить на выходе устройства несколько выходных напряжений.

Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:

  1. Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
  2. Являются источниками помех.

Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.

Классификация и виды импульсных преобразователей

Выпускаемые преобразователи можно разделить на три основные группы по роду тока:

  1. Конверторы. Выполняют преобразование переменного напряжения (АС) в постоянное (DC). Они применяются в основном в промышленности и в быту для изолированного питания устройств потребителей, где используется переменное напряжение 380/220 Вольт с частотой 50 Гц;
  2. Инверторы. Они постоянное напряжение преобразуют в переменное. Применяются в устройствах бесперебойного питания, а также сварочных аппаратах где за счёт такого преобразования есть возможность уменьшения габаритов, а значит и веса устройств.
  3. Конверторы постоянного напряжения. Преобразуют DC в DC. Применяются для питания аккумуляторных батарей и их подзарядки в системах где питание происходит от одного конвертора AC/DC, а каждый уже непосредственный аккумулятор получает за счёт конвертора DC/DC нужное конкретно для него напряжение.

Самые распространённые схемы

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Понижающий преобразователь напряжения и его схема

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Повышающий преобразователь и схема

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

инвертирующая схема

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Схема 5

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Схема 6

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Схема 7

Методы регулировки

Существуют три вида регулирования в системах импульсных преобразователей:

  1. Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
  2. Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
  3. Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
  4. Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Источник

Преобразователи напряжения. Виды и устройство. Работа

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжения могут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Устройство

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:
  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Preobrazovateli napriazheniia povyshaiushchii

Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.
В иды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:
  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.
Преобразователи переменного тока в постоянный:
  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.
Преобразователи постоянного тока в переменный:
Преобразователи переменного напряжения:
  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.
Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:
  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.
Особенности
  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Preobrazovateli napriazheniia blok

Применение
  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;

— автоматики в телемеханике, устройств связи, электробытовых приборов;
— радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

Источник

Импульсный преобразователь напряжения

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ МОРДОВИЯ РЕГИОНАЛЬНЫЙ УЧЕБНЫЙ ОКРУГ

Конкурс исследовательских работ учащихся

«ИНТЕЛЛЕКТУАЛЬНОЕ БУДУЩЕЕ МОРДОВИИ»

Импульсный преобразователь напряжения

Авторы работы: Мамонов Алексей, Голяткин Алексей — студенты специальности «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования»

ГБОУ РМ СПО (ССУЗ) «Саранский электромеханический колледж»

Аннотация. В данной работе предлагается и обсуждается принципиальная схема и конструкторское исполнение импульсного повышающего DC-DC преобразователя 12/220В. Разработанный малогабаритный источник постоянного напряжения 220В с питанием от аккумуляторной батареи 12В предназначен для автономного, яркого и экономичного освещения дома, гаража, дачи при недоступности централизованного электроснабжения. Схема преобразователя отличается простотой, надежностью и набором недорогих и доступных элементов.

1.1 Основные типы преобразователей электрической энергии………………….………5

1.2 Импульсные преобразователи напряжения …………. ………………….…….……..6

2.1. Разработка принципиальной электрической схемы повышающего DC-DC преобразователя напряжения 12/220В.……………………………………………..…. ….9

2.2 Конструкция, технология изготовления и испытание преобразователя………. 10

2.3. Расчет себестоимости преобразователя..……………………………. …………..….11

Список использованных источников и литературы…………………………..…. …………12

В настоящее время на рынке электронной аппаратуры предложен большой выбор преобразователей. Они нашли широкое применение в различных отраслях промышленности и в быту. Преобразователи напряжения различаются своими функциональными возможностями, формой выходного напряжения, мощностью на выходе и соответственно ценой.

В данной работе предлагается и обсуждается принципиальная схема и конструкторское исполнение повышающего DC-DC преобразователя 12/220В. Основными критериями при разработке преобразователя являлись малые габариты при высокой удельной мощности, простота технического решения, надежность и низкая цена.

Целью исследования является разработка и изготовление малогабаритного источника постоянного напряжения 220В с питанием от аккумуляторной батареи 12В. Задачами исследования являются:

— Изучить и проанализировать существующие типы преобразователей электрической энергии.

— Разработать оптимальную электрическую схему и конструкцию преобразователя напряжения на 12-220В.

— Изготовить преобразователь по разработанной схеме.

— Провести испытание преобразователя, измерить входные и выходные характеристики и сделать выводы о его работоспособности.

Методы исследования: изучение литературы и интернет — ресурсов, наблюдение, обобщение, анализ, классификация, моделирование, прогнозирование, эксперимент, расчет, сравнение, описание.

Практическая значимость работы. Разработанный преобразователь напряжения является простым и недорогим источником автономного питания для автономного, яркого и экономичного освещения дома, гаража, дачи при недоступности централизованного электроснабжения.

Актуальность тематики. Устройство актуально для владельцев неэлектрофицированных садовых домиков, гаражей, где единственным источником электроэнергии может быть аккумуляторная батарея автомобиля.

1. Теоретическая часть

1.1 Основные типы преобразователей электрической энергии.

Преобразователь электрической энергии — это электротехническое устройство, предназначенное для преобразования параметров электрической энергии (напряжения, частоты, числа фаз, формы сигнала). Для реализации преобразователей широко используются полупроводниковые приборы, так как они обеспечивают высокий КПД — важный параметр электротехнических устройств.

Основными видами преобразования электрической энергии являются:

· выпрямление переменного тока — преобразование переменного тока в постоянный (рис.1). Этот вид преобразования наиболее распространенный, так как некоторые потребители электрической энергии могут работать только на постоянном токе (сварочные устройства, электролизные установки и т. д.) или имеют на постоянном токе более высокие технико-экономические показатели, чем на переменном (электропривод системы электрической тяги, линии передачи электрической энергии очень высокого напряжения);

Рис. 1. Принцип действия выпрямителя.

· инвертирование тока — преобразование постоянного тока в переменный ток(рис.2). Применяется в тех случаях, когда источник энергии генерирует постоянный ток (аккумуляторные батареи, магнитогидродинамические генераторы);

Рис. 2. Принцип действия инвертора.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

· преобразование частоты — обычно переменный ток промышленной частоты 50 Гц преобразуется в переменный ток непромышленной частоты (питание регулируемых электроприводов переменного тока, установки индукционного нагрева и плавки металлов, ультразвуковые устройства и т. д.) (рис. 3);

· преобразование числа фаз. Иногда необходимо преобразование трехфазного тока в однофазный (для питания мощных дуговых электропечей) или наоборот, однофазного в трехфазный (электрифицированный транспорт). В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной частью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное;

· преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (трансформирование постоянного тока) (рис. 4). Подобное преобразование необходимо на ряде подвижных объектов, где источником питания является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а потребителям требуется постоянный ток более высокого напряжения (например, для питания радиотехнической аппаратуры).

Рис. 4. Принцип действия преобразователя постоянного напряжения.

Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляются с использованием силовых ключевых элементов.

Основные типы полупроводниковых ключей — диоды, силовые биполярные транзисторы, тиристоры, запираемые тиристоры, транзисторы с полевым управлением.

1.2 Импульсные преобразователи напряжения

Для преобразования напряжения одного уровня в напря­жение другого уровня часто применяют импульсные преобразо­ватели напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, ино­гда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразова­телей: понижающие, повышающие и инверти­рующие. Общими для всех этих видов преобразователей являются пять элементов: источник питания, ключевой коммутирующий элемент, индуктивный накопитель энергии (катушка индуктивно­сти, дроссель), блокировочный диод и конденсатор фильтра, включенный параллельно сопротивлению нагрузки. Включение этих пяти элементов в различных сочетаниях по­зволяет реализовать любой из трех типов импульсных преобразо­вателей.

Регулирование уровня выходного напряжения преобра­зователя осуществляется изменением ширины импульсов, уп­равляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии. Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий преобразователь (рис. 5) содержит после­довательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки Rн и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соедине­ния ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 5. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника пи­тания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктив­ным накопителем L1 энергия через диод VD1 передастся в сопро­тивление нагрузки Rн. Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь напряжения (рис. 6) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки с параллельно подключенным конден­сатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 6. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источни­ка питания, ключа и накопителя энергии. Напряжение на сопро­тивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС са­моиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полу­ченное таким способом выходное напряжение превышает напря­жение питания.

Инвертирующий преобразователь импульсного типа содер­жит то же сочетание основных элементов, но в другом их соединении (рис. 7): к источнику питания подключена последо­вательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки Rн с конденсатором фильтра С1. Ин­дуктивный накопитель энергии L1 включен между точкой соедине­ния коммутирующего элемента S1 с диодом VD1 и общей шиной.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Рис. 7. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь следующим образом: при замыкании ключа энер­гия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается при­ложенной к выпрямителю, содержащему диод VD1, сопротивле­ние нагрузки Rн и конденсатор фильтра С1. Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицатель­ного напряжения, на выходе устройства формируется напряжение отрицательного знака.

Существуют другие разновидности импульсных преобразователей напряжения. Обратноходовой преобразователь — разновидность статических импульсных преобразователей напряжения с гальванической развязкой первичных и вторичных цепей. Основным элементом обратноходового преобразователя является многообмоточный накопительный дроссель, который часто называют трансформатором. Различают два основных этапа работы схемы: этап накопления энергии дросселем от первичного источника электроэнергии и этап вывода энергии дросселя во вторичную цепь (вторичные цепи).

Двухтактный преобразователь — преобразователь напряжения, использующий трансформатор для изменения напряжения источника питания. Преимуществом двухтактных преобразователей является их простота. Двухтактный преобразователь похож на обратноходовой преобразователь, однако основан на другом принципе работы (энергия в сердечнике трансформатора не запасается).

2.Экспериментальная часть

2.1. Разработка принципиальной электрической схемы повышающего DCDC преобразователя напряжения 12/220В

Принцип действия предлагаемого преобразователя заключается в следующем: постоянный ток от аккумуляторной батареи напряжением 12В преобразуется инвертором в переменный ток того же напряжения, которое повышается трансформатором до 220В и далее выпрямляется выпрямителем. Общий вид структуры реализованного преобразователя показан на рис. 8.

Рис. 8. Структурная схема преобразователя напряжения 12/220В.

Принципиальная схема преобразователя показана на рис. 9. Преобразователь построен по двухтактной схеме. Основой преобразователя является широко известная микросхема ШИМ контроллера TL494. Данная микросхема имеет встроенный задающий генератор, частота которого устанавливается внешней R3C1 цепочкой. Рабочая частота задается следующим образом: уменьшаем сопротивление R3 – увеличиваем частоту. Увеличиваем емкость C1 – уменьшаем частоту и наоборот. В данной схеме частота получается порядка 100КГц. Такая высокая частота преобразования обусловлена необходимостью минимизации габаритов преобразовательного трансформатора.

В схеме используются мощные полевые транзисторы IRFZ46N, которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Вместо них можно использовать IRFZ44N или IRFZ48N.

Повышающий трансформатор в данном преобразователе используется из блока питания компьютера с измененным количеством витков. Соотношение витков в трансформаторе 1:1:20 , где 1:1 – две половинки первичной обмотки (10+10 витков), а 20 – соответственно, вторичная обмотка (200 витков). Для первичной обмотки используется провод диаметром 0,5мм, для вторичной обмотки – 0,3мм.

Выходное напряжение преобразователя снимается с вторичной обмотки трансформатора и выпрямляется по мостовой схеме, выполненной из быстродействующих диодов КД213.

Рис. 9. Принципиальная схема преобразователя напряжения 12/220В.

Защиту схемы от перегрузки и от неправильного подключения питания (полярности «+» и «—» ) можно реализовать через предохранитель и диод на входе.

2.2. Конструкция, технология изготовления и испытание преобразователя

Внешний вид готового преобразователя напряжения представлен на рис. 10, где 1 – корпус преобразователя, 2 – входные контакты, 3 – выходные контакты, 4 – вентилятор.

Рис. 10. Внешний вид преобразователя напряжения 12/220В.

Монтаж электрической схемы преобразователя выполнен на печатной плате. Топология проводников печатной платы (рис. 11) разработана в программе Sprint-Layout 4.0.

Рис. 11. Рисунок проводников печатной платы.

Печатная плата для преобразователя изготовлена с помощью лазерно-утюжной технологии в электромонтажной мастерской колледжа. Суть данной технологии заключается в следующем: рисунок печатных проводников наносится на бумагу лазерным принтером. Перенос рисунка на фольгированный текстолит производится с помощью утюга при температуре 180°…220°С. При этом расплавленный под действием температуры тонер от лазерного принтера, нанесенный на фольгироанную поверхность в виде рисунка, выполняет роль защитного покрытия, устойчивого к действию травящего раствора. Не защищенные открытые места металлизации удаляются методом химического травления в растворе хлорного железа. После травления и тщательной промывки платы тонер удаляется ацетоном.

Для предупреждения перегрева транзисторов при длительных режимах работы установлены радиатор и вентилятор.

Готовый преобразователь был испытан для питания энергосберегающих ламп дневного света цокольного типа и ламп накаливания мощностью до 40 Вт (рис. 12).

Рис. 12. Испытание преобразователя.

В результате испытаний получены следующие данные:

Входное напряжение – 12В, выходное напряжение – 220+/-5В, максимальная выходная мощность – 40Вт.

Преобразователь испытывался как в кратковременных, так и в длительных режимах работы (4часа) с энергосберегающими и лампами накаливания разной мощности до 40Вт. Во всех случаях было отмечено нормальное яркое свечение без мерцания.

Сравнительный эксперимент на двух лампах одного номинала, подключенных к преобразователю и к розетке с напряжением 220В – 50Гц, показал визуально одинаковый результат.

2.3. Расчет себестоимости преобразователя

Себестоимость преобразователя по стоимости материалов составляет 356 рублей. Расчет приведен в таблице №1. Для расчета взяты средние розничные цены в специализированных магазинах электроники.

Таблица №1. Расчет себестоимости преобразователя.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector