Увеличение напряжения после диодного моста

ДОМОСТРОЙСантехника и строительство

  • Четверг, 12 декабря 2019 1:08
  • Автор: Sereg985
  • Прокоментировать
  • Рубрика: Строительство
  • Ссылка на пост
  • https://firmmy.ru/

Предисловие

Очень много вопросов задают по статье как получить из переменного напряжения постоянное. Напомню, что мы получали постоянное напряжение с помощью типичной схемы, которая используется во всей электронике:

Да, та статья получилась чуток сыровата, но суть преобразования переменного тока в постоянный мы постарались объяснить на пальцах. Но читатели все равно “не вкурили” ту статью, поэтому было решено написать еще одну статейку, но на этот раз разжевать все досконально.

Снова да ладом…

Придется возвращаться к истокам. Вместо трансформатора я возьму ЛАТР, который будет выдавать переменный ток:

Выставляем на ЛАТРе с помощью цифрового осциллографа напряжение амплитудой в 10 Вольт:

Как мы можем увидеть в нижнем левом углу, частота нашего сигнала 50 Герц. Это и есть частота сети. Длина одного кубика по вертикали равна 2 Вольтам.

Далее берем 4 кремниевых диода

И спаиваем из них диодный мост вот по такой схеме:

Подаем напряжение с ЛАТРа на диодный мост, а с других концов цепляем щуп осциллографа

Тыкаем щупом осциллографа в эти красные кружочки на схеме. Землю на один кружочек, а сигнальный на другой.

Смотрим, что получилось на дисплее осциллографа

Дело в том, что сопротивление щупа осциллографа обладает очень высоким входным сопротивлением, или иначе простыми словами: мы подцепили очень-очень высокоомный резистор к выходу диодного моста. Поэтому диодный мост в холостом режиме, то есть в режиме без нагрузки, не функционирует.

Для того, чтобы проверить диодный мост на работоспособность, нам надо его нагрузить. Это может быть резистор в несколько десятков или сотен Ом, лампочка, либо какая-нибудь электронная безделушка. В моем случае я взял лампочку накаливания на 12 Вольт от поворотника мотоцикла:

Цепляем ее к диодному мосту

Тыкаем щуп осциллографа в эти точки и смотрим осциллограмму

Как мы видим, напряжение с ЛАТРа чуть просело. Все зависит, конечно, от подключаемой нагрузки и мощности самого ЛАТРа. Про это я писал еще в статье работа трансформатора

Теперь тыкаем щупом в эти точки

Классика жанра! Превращаем отрицательную полуволну в положительную и получаем “горки” с частотой в 100 Герц ;-). Но ваш внимательный глаз ничего не заметил? Если даже мы и выпрямили напряжение с помощью диодного моста, то почему амплитуда каждой полуволны стала еще чуть меньше?

Дело все в том, что на PN-переходе диода в прямом смещении падает напряжение в 0,6-0,7 Вольт. Именно поэтому оно и вычитается с амплитуды напряжения, которое надо выпрямить.

Давайте теперь к диодному мосту запаяем конденсатор емкостью в 5000 мкФ и не будем цеплять никакую нагрузку

Тыкаем щупом сюда

Получили вот такую осциллограмму постоянного тока. Она в 1,41 раз больше, чем действующее (среднеквадратичное) значение сигнала с ЛАТРа (о действующем напряжении чуть ниже)

А теперь цепляем лампочку

Осциллограмма кардинально изменилась.

Как мы видим, напряжение просело и у нас получилась осциллограмма постоянного напряжения с небольшими пульсациями. Вот эти маленькие “холмики” и есть пульсации, в отличите от “гор” сразу после диодного моста с лампочкой-нагрузкой. Физический смысл здесь такой: конденсатор не успевает разряжаться на нагрузке, как снова приходит новая “горка” и снова заряжает конденсатор.

Правило диодного выпрямителя с конденсатором очень простое: чем больше емкость конденсатора и чем больше сопротивление нагрузки, тем меньше по амплитуде будут пульсации, и наоборот.

Но почему у нас просело напряжение? Ведь было уже 10 Вольт постоянного напряжения на конденсаторе без нагрузки?

А как цепанули лампочку стало намного меньше…

В чем же проблема? А проблема именно в законе сохранения энергии…

Среднеквадратичное значения напряжения

Допустим, у нас есть лампочка накаливания. Я ее подцепил к источнику постоянного тока и она у меня загорелась с какой-то яркостью. Потом я цепляю эту лампу к источнику переменного тока и добиваюсь такого же свечения лампы. Форма сигнала постоянного и переменного напряжения разные, а мощность, выдаваемая в нагрузку, в данном случае лампочку, одинаковая. Можно сказать, что среднеквадратичное значение переменного тока равняется значению постоянного тока.

То есть если у нас лампочка на 12 Вольт, я могу подать на нее 12 Вольт с блока питания или 12 Вольт с ЛАТРа. Лампочка будет светить с такой же яркостью. Мультиметр в режиме измерения переменного тока показывает именно среднеквадратичное значение напряжения.

Итак, чему же равняется среднеквадратичное значение вот этого сигнала?

А давайте замеряем. Для этого я беру мой любимый прибор токоизмерительные клещи, в который встроен целый мультиметр с True RMS и начинаю замерять среднеквадратичное значение

Мультиметр показал 7,18 Вольт. Это и есть среднеквадратичное значение этого сигнала.

Для синусоидальных сигналов оно легко вычисляется по формуле:

Umax – максимальная амплитуда, В

UД – действующее (среднеквадратичное) значение напряжения, В

Если считать по формуле, то получим 10/√2=7,07 Вольт. Сходится с небольшой погрешностью.

Как мы подцепили нагрузку, у нас сразу просела амплитуда напряжения с ЛАТРа, а следовательно, и среднеквадратичное значение напряжения

6, 68 Вольт. Хотя по формуле получается 9/1,41=6,38. Спишем на погрешности измерения.

Среднеквадратичное значение сложных сигналов

Но чему же равняется среднеквадратичное значение напряжения после диодного моста с включенной нагрузкой-лампочкой?

Для определения среднеквадратичного значения такого сигнала:

нам понадобится формула и табличка.

где Ka – это коэффициент амплитуды

Umax – максимальная амплитуда сигнала

U – действующее (среднеквадратичное) значение сигнала

А вот и табличка:

Теперь ищем по табличке наш пульсирующий сигнал с выпрямителя. Как мы видим, его коэффициент амплитуды равен 1,41 или, если быть точнее, √2. То есть точно такой же, как и у синусоидального сигнала.

Вычисляем по формуле и получаем:

После того, как мы поставили конденсатор, у нас почти получилась осциллограмма постоянного тока с значением в примерно в 6 Вольт, если полностью усреднить нашу кривую, то есть пренебречь небольшими пульсациями. Можно даже сказать, что это значение постоянного тока будет равняться среднеквадратичному значению переменного тока номиналом в 6 Вольт. Не забываем, что 0,6-0,7 Вольт у нас падают на диодах.

Заключение

Итак, какие выводы делаем из всего вышесказанного и показанного? Среднеквадратичное значение напряжения на выходе диодного выпрямителя чуточку меньше, чем до диодного моста. По 0,6-0,7 Вольт падает на диодах. Если бы мы поставили диоды Шоттки, то выиграли бы 0,3-0,4 Вольта, так как падения на Шоттках 0,2-0,3 Вольта. Схема двухполупериодного выпрямителя, с энергетической точки зрения является очень неплохой и поэтому используется в большинстве радиоэлектронных устройств.

Предисловие

Очень много вопросов задают по статье как получить из переменного напряжения постоянное. Напомню, что мы получали постоянное напряжение с помощью типичной схемы, которая используется во всей электронике:

Да, та статья получилась чуток сыровата, но суть преобразования переменного тока в постоянный мы постарались объяснить на пальцах. Но читатели все равно “не вкурили” ту статью, поэтому было решено написать еще одну статейку, но на этот раз разжевать все досконально.

Снова да ладом…

Придется возвращаться к истокам. Вместо трансформатора я возьму ЛАТР, который будет выдавать переменный ток:

Выставляем на ЛАТРе с помощью цифрового осциллографа напряжение амплитудой в 10 Вольт:

Как мы можем увидеть в нижнем левом углу, частота нашего сигнала 50 Герц. Это и есть частота сети. Длина одного кубика по вертикали равна 2 Вольтам.

Далее берем 4 кремниевых диода

И спаиваем из них диодный мост вот по такой схеме:

Подаем напряжение с ЛАТРа на диодный мост, а с других концов цепляем щуп осциллографа

Тыкаем щупом осциллографа в эти красные кружочки на схеме. Землю на один кружочек, а сигнальный на другой.

Смотрим, что получилось на дисплее осциллографа

Дело в том, что сопротивление щупа осциллографа обладает очень высоким входным сопротивлением, или иначе простыми словами: мы подцепили очень-очень высокоомный резистор к выходу диодного моста. Поэтому диодный мост в холостом режиме, то есть в режиме без нагрузки, не функционирует.

Для того, чтобы проверить диодный мост на работоспособность, нам надо его нагрузить. Это может быть резистор в несколько десятков или сотен Ом, лампочка, либо какая-нибудь электронная безделушка. В моем случае я взял лампочку накаливания на 12 Вольт от поворотника мотоцикла:

Цепляем ее к диодному мосту

Тыкаем щуп осциллографа в эти точки и смотрим осциллограмму

Как мы видим, напряжение с ЛАТРа чуть просело. Все зависит, конечно, от подключаемой нагрузки и мощности самого ЛАТРа. Про это я писал еще в статье работа трансформатора

Теперь тыкаем щупом в эти точки

Классика жанра! Превращаем отрицательную полуволну в положительную и получаем “горки” с частотой в 100 Герц ;-). Но ваш внимательный глаз ничего не заметил? Если даже мы и выпрямили напряжение с помощью диодного моста, то почему амплитуда каждой полуволны стала еще чуть меньше?

Дело все в том, что на PN-переходе диода в прямом смещении падает напряжение в 0,6-0,7 Вольт. Именно поэтому оно и вычитается с амплитуды напряжения, которое надо выпрямить.

Давайте теперь к диодному мосту запаяем конденсатор емкостью в 5000 мкФ и не будем цеплять никакую нагрузку

Тыкаем щупом сюда

Получили вот такую осциллограмму постоянного тока. Она в 1,41 раз больше, чем действующее (среднеквадратичное) значение сигнала с ЛАТРа (о действующем напряжении чуть ниже)

А теперь цепляем лампочку

Осциллограмма кардинально изменилась.

Как мы видим, напряжение просело и у нас получилась осциллограмма постоянного напряжения с небольшими пульсациями. Вот эти маленькие “холмики” и есть пульсации, в отличите от “гор” сразу после диодного моста с лампочкой-нагрузкой. Физический смысл здесь такой: конденсатор не успевает разряжаться на нагрузке, как снова приходит новая “горка” и снова заряжает конденсатор.

Правило диодного выпрямителя с конденсатором очень простое: чем больше емкость конденсатора и чем больше сопротивление нагрузки, тем меньше по амплитуде будут пульсации, и наоборот.

Но почему у нас просело напряжение? Ведь было уже 10 Вольт постоянного напряжения на конденсаторе без нагрузки?

А как цепанули лампочку стало намного меньше…

В чем же проблема? А проблема именно в законе сохранения энергии…

Среднеквадратичное значения напряжения

Допустим, у нас есть лампочка накаливания. Я ее подцепил к источнику постоянного тока и она у меня загорелась с какой-то яркостью. Потом я цепляю эту лампу к источнику переменного тока и добиваюсь такого же свечения лампы. Форма сигнала постоянного и переменного напряжения разные, а мощность, выдаваемая в нагрузку, в данном случае лампочку, одинаковая. Можно сказать, что среднеквадратичное значение переменного тока равняется значению постоянного тока.

То есть если у нас лампочка на 12 Вольт, я могу подать на нее 12 Вольт с блока питания или 12 Вольт с ЛАТРа. Лампочка будет светить с такой же яркостью. Мультиметр в режиме измерения переменного тока показывает именно среднеквадратичное значение напряжения.

Итак, чему же равняется среднеквадратичное значение вот этого сигнала?

А давайте замеряем. Для этого я беру мой любимый прибор токоизмерительные клещи, в который встроен целый мультиметр с True RMS и начинаю замерять среднеквадратичное значение

Мультиметр показал 7,18 Вольт. Это и есть среднеквадратичное значение этого сигнала.

Для синусоидальных сигналов оно легко вычисляется по формуле:

Umax – максимальная амплитуда, В

UД – действующее (среднеквадратичное) значение напряжения, В

Если считать по формуле, то получим 10/√2=7,07 Вольт. Сходится с небольшой погрешностью.

Как мы подцепили нагрузку, у нас сразу просела амплитуда напряжения с ЛАТРа, а следовательно, и среднеквадратичное значение напряжения

6, 68 Вольт. Хотя по формуле получается 9/1,41=6,38. Спишем на погрешности измерения.

Среднеквадратичное значение сложных сигналов

Но чему же равняется среднеквадратичное значение напряжения после диодного моста с включенной нагрузкой-лампочкой?

Для определения среднеквадратичного значения такого сигнала:

нам понадобится формула и табличка.

где Ka – это коэффициент амплитуды

Umax – максимальная амплитуда сигнала

U – действующее (среднеквадратичное) значение сигнала

А вот и табличка:

Теперь ищем по табличке наш пульсирующий сигнал с выпрямителя. Как мы видим, его коэффициент амплитуды равен 1,41 или, если быть точнее, √2. То есть точно такой же, как и у синусоидального сигнала.

Вычисляем по формуле и получаем:

После того, как мы поставили конденсатор, у нас почти получилась осциллограмма постоянного тока с значением в примерно в 6 Вольт, если полностью усреднить нашу кривую, то есть пренебречь небольшими пульсациями. Можно даже сказать, что это значение постоянного тока будет равняться среднеквадратичному значению переменного тока номиналом в 6 Вольт. Не забываем, что 0,6-0,7 Вольт у нас падают на диодах.

Заключение

Итак, какие выводы делаем из всего вышесказанного и показанного? Среднеквадратичное значение напряжения на выходе диодного выпрямителя чуточку меньше, чем до диодного моста. По 0,6-0,7 Вольт падает на диодах. Если бы мы поставили диоды Шоттки, то выиграли бы 0,3-0,4 Вольта, так как падения на Шоттках 0,2-0,3 Вольта. Схема двухполупериодного выпрямителя, с энергетической точки зрения является очень неплохой и поэтому используется в большинстве радиоэлектронных устройств.

Здравствуйте.
Подскажите, пожалуйста, почему в учебниках пишется, что на выходе после диодного моста выпрямленное напряжение увеличивается в 1,4 раза.
т.е. AC 220В становится DC 308 В?
в мультисиме собираю схему
источник 220 переменный
диодный мост
конденсатор сглаживающий 1000 мкф
и резистор 200 ом

на вольтметре DC 90 В
на осцилографе (канал а до моста. канал б — после моста)
линия постояннго напряжения явно ниже пиков синусоиды переменного тока.

все соединения к мосту проверил, сравнивая с википедиями и др. источниками.

а теперь еще заметил странную вещь.
вольтметром замерил напряжение на входе в диодный мост — 220 В.
просматривая повременное значение напряжение до моста — вижу, пик 308 вольт.
как это объяснить?

и что делать, что бы с 220 в на постоянные 300 в? Трансформатор только?

Источник

Как повысить постоянное и переменное напряжение

Многие электронные приборы, для работы которых применяется переменный ток в 220 вольт, используют в своих схемах диодные мосты. Основной функцией данного устройства являются действия по выпрямлению переменного тока. Это связано с тем, что многие приборы рассчитаны на питание постоянного тока. Поэтому, и возникает постоянная необходимость в выпрямлении. Есть много вариантов подключения подобных устройств. Так, существует диодный мост, схема с конденсатором у которого, отличается от традиционной сборки. Дешевые полупроводниковые диоды позволяют повсеместно применять такие схемы.

Повышение напряжения в сети электропитания

Если же низкое напряжение у всех в округе – нужно думать, как повысить напряжение в сети у себя. Но не пугайтесь сразу же больших затрат на чудеса современной электроники. Они нужны, о них речь пойдет ниже. Но чаще всего проблему можно решить быстро и без хлопот подручными средствами. Причем – технически грамотно и совершенно безопасно.

При стабильно низком напряжении в сети выручит самый обыкновенный понижающий трансформатор на 12 – 36 В. Да, да, именно понижающий. И большой его мощности не потребуется. 100-ваттный потянет нагрузку в 500 Вт, а киловаттный – в 5 кВт. И увеличить напряжение в сети можно до допустимых пределов.

Никаких чудес, никакой паранауки – достаточно такой трансформатор использовать как повышающий автотрансформатор, добавив напряжение понижающей обмотки к линейному. Тогда при 175 В в розетке на выходе будет при 12 В добавочных 187 В. Маловато, но бытовая техника работать будет. Если вдруг напряжение повысится до нормы, автотрансформатор выдаст 232 В; это еще в норме. При 36 В добавочных 175 В вытягиваем до 211 В – норма! Но вдруг и в розетке норма окажется, получим 256 В, а это уже нехорошо для электроприборов. Поэтому лучше всего – 24 В добавочных.

А как же мощность? Дело в том, что в сетевой обмотке автотрансформатора течет РАЗНОСТНЫЙ ток, и если повышать напряжение на небольшую долю от исходного, он окажется совсем незначительным. Правда, в дополнительной обмотке пойдет суммарный ток, но она в понижающих трансформаторах выполняется из толстого провода и при мощности исходного трансформатора в 100 Вт выдержит ток в 3-5 А, а это более 500 Вт при 220 В.

Нужно только правильно сфазировать обмотки. Для этого включаем трансформатор, как показано на схеме, БЕЗ НАГРУЗКИ. К гнездам «Прибор» подключаем любой вольтметр переменного тока на 300 В и более, хотя бы тестер. Показывает меньше, чем в розетке? Меняем местами концы любой из обмоток. Стало больше, чем в розетке? Все, можно пользоваться. Потребителей включаем вместо измерительного прибора.

Нужно только поставить в цепь сети предохранитель – вдруг в розетке «зашкалит» (это может случиться, если на старой и плохо обслуживаемой подстанции испортится зануление), так пусть он сгорит, а не техника.

Подходящий трансформатор можно найти на «железном» или радиорынке, а то и у себя в кладовке. Не спутайте только с гасящим устройством для низковольтных электропаяльников – они выполнены на конденсаторах, и от них толку не будет, а будет авария.

Работа диодного моста

Принцип работы диодного моста заключается в следующем. На его вход, обозначенный переменным значком, производится подача переменного тока с изменяющейся полярностью. Частота изменений, как правило, совпадает с частотой в электрической сети. На выходе, где расположены положительный и отрицательный выводы, получается ток исключительно с одной полярностью.

Диодный мост схема с конденсатором

Однако, на выходящем токе будут наблюдаться пульсации с частотой, превышающей частоту переменного тока, подаваемого на вход. Такие пульсации являются нежелательными и препятствуют нормальной работе всей схемы. Для ликвидации таких пульсаций, применяются специальные фильтры. Для самых простых фильтров используются электролитические конденсаторы с большой емкостью. Таким образом, во всех блоках питания устанавливается диодный мост, схема с конденсатором которого позволяет эффективно сглаживать все пульсации выходящего тока.

Диодный мост схема с конденсатором

Чтобы повысить производительность выпрямляющих устройств, в их конструкции применяется схема диодной сборки. В ее состав входят четыре диода с одинаковыми параметрами, объединенные в одном общем корпусе. Для их соединения используется схема мостового выпрямителя. Такая сборка очень компактная, для всех диодов соблюдается одинаковый тепловой режим. Стоимость общей конструкции значительно ниже, чем у четырех отдельных диодов. Однако, существенным недостатком является необходимость замены всего диодного моста, при выходе из строя хотя-бы одного диода.

Защита от перепадов напряжения

В городских условиях напряжение в сети, как правило, держится, но актуальной становится защита квартиры от перепадов напряжения. Вот тут пора вспомнить о чудесах электроники, поскольку «железно – проволочная» электротехника эффективных, простых и дешевых способов их сглаживания не знает.

Поспрашивайте в электро- и радиомагазинах автомат защиты от перепадов напряжения; их еще называют «барьер защитный». Как примерно такой выглядит, видно на иллюстрации. Современные устройства такого типа сравнительно недороги, компактны, их легко подключить и обслуживания в процессе эксплуатации они не требуют.

Простой защитный барьер для домашней электросети

Но не вспоминайте об автотрансформаторе на даче – защитный барьер лишь устраняет броски напряжения; все время держать напряжение в розетке при стабильно пониженном он не может. В качестве накопителей энергии в таких устройствах используются суперконденсаторы, а они хоть и «супер», но все же не электрогенераторы.

Полупроводниковые выпрямители блоков питания, схемы, онлайн расчёт

Классификация, свойства, схемы, онлайн калькулятор. Расчёт ёмкости сглаживающего конденсатора.

«- Почему пульт не работает? — Я, конечно, не электрик, но, по-моему, пульт не работает, потому что телевизора нет».

— А для чего нам ещё «нахрен не упал» профессиональный электрик? — Для чего? Да много для чего! Например, для того, чтобы быть в курсе, что без источника питания, а точнее без преобразователя сетевого переменного напряжения в постоянное, не обходится ни одно электронное устройство. — А электрик? — Электрик, электрик… Что электрик?… «Электрик Сидоров упал со столба и вежливо выругался…»

Итак, приступим. Выпрямитель — это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное. Выпрямитель содержит трансформатор, необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями нагрузки; вентильную группу (в нашем случае диодную), которая обеспечивает одностороннее протекание тока в цепи нагрузки; фильтр, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Расчёт трансформатора — штука громоздкая, в рамках этой статьи рассматриваться не будет, поэтому сразу перейдём к основным и наиболее распространённым схемам выпрямителей блоков питания радиоэлектронной аппаратуры. В процессе повествования давайте сделаем допущение, что под величинами переменных напряжений и токов в цепях выпрямителей мы будем подразумевать их действующие (эффективные) значения: Uдейств = Uампл/√2 и Iдейств = Iампл/√2. Именно такие значения приводятся в паспортных характеристиках обмоток трансформаторов, да и большинство измерительных приборов отображают — не что иное, как аккурат эффективные значения сигналов переменного тока.

Однополупериодный выпрямитель.

На Рис.1 приведена однофазная однополупериодная схема выпрямления, а также осциллограммы напряжений в различных точках (чёрным цветом — напряжение на нагрузке при отсутствии сглаживающего конденсатора С1, красным — с конденсатором). В данном типе выпрямителя напряжение с вторичной обмотки трансформатора поступает в нагрузку через диод только в положительные полупериоды переменного напряжения. В отрицательные полупериоды полупроводник закрыт, и напряжение в нагрузку подаётся только с заряженного в предыдущий полупериод конденсатора. Однополупериодная схема выпрямителя применяется крайне редко и только для питания цепей с низким током потребления ввиду высокого уровня пульсаций выпрямленного напряжения, низкого КПД, и неэффективного использования габаритной мощности трансформатора.

Здесь обмотка трансформатора должна обеспечивать величину тока, равную удвоенному значению максимального тока в нагрузке Iобм = 2×Iнагр и напряжение холостого хода

U2 ≈ 0,75×Uн. При выборе диода D1 для данного типа схем, следует придерживаться следующих его параметров: Uобр > 3,14×Uн и Iмакс > 3,14×Iн.

Едем дальше. Двухполупериодный выпрямитель с нулевой точкой.

Схема, приведённая на Рис.2, является объединением двух противофазных однополупериодных выпрямителей, подключённых к общей нагрузке. В одном полупериоде переменного напряжения ток в нагрузку поступает с верхней половины вторичной обмотки через открытый диод D1, в другом полупериоде — с нижней, через второй открытый диод D2. Как и любая двухполупериодная, эта схема выпрямителя имеет в 2 раза меньший уровень пульсации по сравнению с однополупериодной схемой. К недостаткам следует отнести более сложную конструкцию трансформатора и такое же, как в однополупериодной схеме — нерациональное использование трансформаторной меди и стали.

Каждая из обмоток трансформатора должна обеспечивать величину тока, равную значению максимального тока в нагрузке Iобм = Iнагр и напряжение холостого хода

U2 ≈ 0,75×Uн. Полупроводниковые диоды D1 и D2 должны обладать следующими параметрами: Uобр > 3,14×Uн и Iмакс > 1,57×Iн.

И наконец, классика жанра — Мостовые схемы двухполупериодных выпрямителей.

На Рис.3 слева изображена схема однополярного двухполупериодного мостового выпрямителя с использованием одной обмотки трансформатора. Графики напряжений на входе и выходе выпрямителя аналогичны осциллограммам, изображённым на Рис.2. Во время положительного полупериода переменного напряжения ток протекает через цепь, образованную D2 и D3, во время отрицательного — через цепь D1 и D4. В обоих случаях направление тока, протекающего через нагрузку, одинаково.

Если сравнивать данную схему с предыдущей схемой выпрямителя с нулевой точкой, то мостовая имеет более простую конструкцию трансформатора при таком же уровне пульсаций, менее жёсткие требования к обратному напряжению диодов, а главное — более рациональное использование трансформатора и возможность уменьшения его габаритной мощности. К недостаткам следует отнести необходимость увеличения числа диодов, что приводит к повышенным тепловым потерям за счёт большего падения напряжения в выпрямителе.

Обмотка трансформатора должна обеспечивать величину тока, равную Iобм = 1,41×Iнагр и напряжение холостого хода

U2 ≈ 0,75×Uн. Полупроводниковые диоды следует выбирать исходя из следующих соображений: Uобр > 1,57×Uн и Iмакс > 1,57×Iн.

При наличии у трансформатора двух одинаковых вторичных обмоток, или одной с отводом от середины выводом, однополярная схема преобразуется в схему двуполярного выпрямителя со средней точкой (Рис.3 справа). Естественным образом, диоды в двуполярном исполнении должны выбираться исходя из двойных значений Uобр и Iмакс по отношению к однополярной схеме.

Значения Uобр и Iмакс приведены исходя из величин наибольшего (амплитудного) значения обратного напряжения, приложенного к одному диоду, и наибольшего (амплитудного) значения тока через один диод при отсутствии сглаживающих фильтров на выходе.

Конденсатор С1 во всех схемах — это простейший фильтр, выделяющий постоянную составляющую напряжения и сглаживающий пульсации напряжения в нагрузке. Для выпрямителей, не содержащих стабилизатор, его ёмкость рассчитывается по формулам: С1 = 6400×Iн/(Uн×Кп) для однополупериодных выпрямителей и С1 = 3200×Iн/(Uн×Кп) — для двухполупериодных, где Кп — это коэффициент пульсаций, численно равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей. Для стабилизированных источников питания ёмкость С1 можно уменьшить в 5-10 раз.

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой «чистоты»: 10-3… 10-2 (0,1-1%) — малогабаритные транзисторные радиоприёмники и магнитофоны, 10-4… 10-3 (0,01-0,1%) — усилители радио и промежуточной частоты, 10-5… 10-4 (0,001-0,01%) — предварительные каскады усилителей звуковой частоты и микрофонных усилителей.» — авторитетно учит нас печатное издание.

Ну и под занавес приведём незамысловатую онлайн таблицу.

КАЛЬКУЛЯТОР РАСЧЁТА ВЫПРЯМИТЕЛЯ ДЛЯ БЛОКА ПИТАНИЯ.

А на следующей странице рассмотрим сглаживающие фильтры силовых выпрямителей, не только ёмкостные, но и индуктивные, а также активные фильтры на биполярных транзисторах.

Источник

Что такое диодный мост, принцип его работы и схема подключения

От энергоснабжающей организации до потребителей доставляется переменное напряжение. Это связано с особенностями транспортировки электроэнергии. Но большая часть бытовых (и, частично, производственных) электроприемников требует питания постоянным напряжением. Для его получения требуются преобразователи. Во многих случаях их строят по схеме «понижающий трансформатор – выпрямитель – сглаживающий фильтр» (за исключением импульсных блоков питания). В качестве выпрямителя используются диоды, включенные по мостовой схеме.

Схема диодного моста.

Для чего нужен диодный мост и как он работает

Диодный мост используется в качестве схемы выпрямления, преобразующей переменное напряжение в постоянное. Принцип его действия основан на односторонней проводимости — свойстве полупроводникового диода пропускать ток только в одном направлении. Простейшим выпрямителем может служить и одиночный диод.

Схема простейшего выпрямителя с одним диодом.

При подобном включении нижняя (отрицательная) часть синусоиды «срезается». Такой способ имеет недостатки:

  • форма выходного напряжения далека от постоянной, требуется большой и громоздкий конденсатор в качестве сглаживающего фильтра;
  • мощность источника переменного тока используется максимум наполовину.

Форма выходного напряжения схемы с одним диодом.

Ток через нагрузку повторяет форму выходного напряжения. Поэтому лучше использовать двухполупериодный выпрямитель в виде диодного моста. Если включить четыре диода по указанной схеме и подключить нагрузку, то при подаче на вход переменного напряжения блок будет работать так:

Схема работы диодного моста с четырьмя диодами.

При положительном напряжении (верхняя часть синусоиды, красная стрелка) ток пойдет через диод VD2, нагрузку, VD3. При отрицательном (нижняя часть синусоиды, зеленая стрелка) через диод VD4, нагрузку, VD1. В итоге за один период ток дважды проходит через нагрузку в одном направлении.

Форма выходного напряжения схемы с четырьмя диодами.

Форма выходного напряжения гораздо ближе к прямой, хотя уровень пульсаций довольно высок. Мощность источника используется полностью.

Если имеется источник трехфазного напряжения необходимой амплитуды, можно сделать мост по такой схеме:

Схема диодного моста для трёхфазного источника переменного напряжения.

В нём на нагрузке будут складываться три тока, повторяющие форму выходного напряжения, со сдвигом фаз в 120 градусов:

Форму синусоид выходного напряжения, со сдвигом фаз в 120 градусов.

Выходное напряжение будет огибать верхушки синусоид. Видно, что напряжение пульсирует гораздо меньше, чем в однофазной схеме, его форма более близка к прямой. В этом случае ёмкость сглаживающего фильтра будет минимальной.

И еще один вариант моста – управляемый. В нём два диода заменены тиристорами – электронными приборами, которые открываются при подаче сигнала на управляющий электрод. В открытом виде тиристоры ведут себя практически как обычные диоды. Схема принимает такой вид:

Схема управляемого диодного моста с тиристорами.

Сигналы включения подаются от схемы управления в согласованные моменты времени, отключение происходит в момент перехода напряжения через ноль. Потом напряжение усредняется на конденсаторе, и этим средним уровнем можно управлять.

Вид выходного напряжения после управляемого диодного моста.

Обозначение диодного моста и схема подключения

Так как мост из диодов может быть построен по различным схемам, а элементов в нём содержится немного, то в большинстве случаев обозначение выпрямительного узла производят, просто рисуя его принципиальную схему. Если это неприемлемо – например, в случае построения блок-схемы – то мост указывается в виде символа, которым указывают любой преобразователь переменного напряжения в постоянное:

Блок схема диодного моста.

» означает цепи переменного тока, символ «=» – цепи постоянного тока, а «+» и «-» – выходную полярность.

Если выпрямитель построен по классической мостовой схеме из 4 диодов, то допускается немного упрощенное изображение:

Упрощённое изображение диодного моста.

Подключается вход выпрямительного блока к выходным терминалам источника переменного тока (в большинстве случаев им служит понижающий трансформатор) без соблюдения полярности – любой выходной вывод подключается к любому входному. Выход моста подключается к нагрузке. Она может требовать соблюдения полюсности (включая стабилизатор, сглаживающий фильтр), а может и не требовать.

Схема диодного моста с источником переменного напряжения.

Диодный мост может быть подключен к источнику постоянного напряжения. В этом случае получается схема защиты от непреднамеренной переполюсовки – при любом подключении входов моста к выходу блока питания, полярность напряжения на его выходе не изменится.

Основные технические характеристики

При выборе диодов или готового моста в первую очередь надо смотреть на наибольший рабочий прямой ток. Он должен с запасом превышать ток нагрузки. Если эта величина неизвестна, а известна мощность, её надо пересчитать в ток по формуле Iнагр=Pнагр/Uвых. Для увеличения допустимого тока полупроводниковые приборы можно соединять параллельно – наибольший ток нагрузки делится на количество диодов. Диоды в одной ветви моста в этом случае лучше подобрать по близкому значению падения напряжения в открытом состоянии.

Второй важный параметр – прямое напряжение, на которое рассчитан мост или его элементы. Оно не должно быть ниже выходного напряжения источника переменного тока (амплитудного значения!). Для надежной работы устройства надо взять запас в 20-30%. Для увеличения допустимого напряжения диоды можно включать последовательно – в каждое плечо моста.

Этих двух параметров достаточно для предварительного решения об использовании диодов в выпрямительном устройстве, но надо обратить внимание и на некоторые другие характеристики:

  • максимальная рабочая частота – обычно несколько килогерц и для работы на промышленных частотах 50 или 100 Гц значения не имеет, а если диод будет работать в импульсной схеме, этот параметр может стать определяющим;
  • падение напряжения в открытом состоянии у кремниевых диодов составляет около 0,6 В, что неважно для выходного напряжения, например, в 36 В, но может быть критичным при работе ниже 5 В – в этом случае надо выбирать диоды Шоттки, которые характеризуются низким значением этого параметра.

Разновидности диодных мостов и их маркировка

Диодный мост можно собрать на дискретных диодах. Чтобы соблюсти полярность, надо обратить внимание на маркировку. В некоторых случаях метка в виде рисунка нанесена прямо на корпус полупроводникового прибора. Это характерно для изделий отечественного производства.

Внешний вид дидного маста отечественного производства.

Зарубежные (и многие современные российские) приборы маркируются точкой или кольцом. В большинстве случаев так обозначается анод, но гарантии нет. Лучше посмотреть справочник или воспользоваться тестером.

Внешний вид диода.

Можно сделать мост из сборки – четыре диода объединены в одном корпусе, а соединение выводов можно выполнить внешними проводниками (например, на печатной плате). Схемы сборок могут быть разнообразными, поэтому для правильного соединения надо смотреть даташиты.

Диодная сборка BAV99S.

Например, у диодной сборки BAV99S, содержащей 4 диода, но имеющей только 6 выводов, внутри имеется два полумоста, соединенных следующим образом (на корпусе около вывода 1 имеется точка):

Схема диодной сборки BAV99S.

Чтобы получить полноценный мост, надо соединить внешними проводниками соответствующие выводы (красным показана трассировка дорожек в случае использования печатного монтажа):

Соединение внешними проводниками сборки BAV99S, для получения полноценного диодного моста.

В этом случае переменное напряжение подводится к выводам 3 и 6. Положительный полюс постоянного снимается с вывода 5 или 2, а отрицательный – 4 или 1.

И самый простой вариант – это сборка с готовым мостом внутри. Из отечественных изделий это могут быть КЦ402, КЦ405, существуют мосты-сборки зарубежного производства. Маркировка выводов во многих случаях нанесена прямо на корпус, и задача сводится только к корректному выбору по характеристикам и к безошибочному подключению. Если наружного обозначения выводов нет, придется обратиться к справочнику.

Диодная сборка с диодным мостом КЦ405.

Преимущества и недостатки

Преимущества диодного моста общеизвестны:

  • отработанные десятилетиями схемы;
  • простота сборки и подключения;
  • несложная диагностика неисправности и простота ремонта.

В качестве недостатков надо упомянуть рост габаритов и веса схемы при увеличении мощности, а также необходимости использования радиаторов для мощных диодов. Но с этим сделать ничего нельзя – физику не обмануть. Когда эти условия станут неприемлемыми, надо решать вопрос о переходе к импульсной схеме источника питания. Кстати, мостовое включение диодов может быть использовано и в ней.

Также надо отметить форму выходного напряжения, далекую от постоянной. Для работы с потребителями, предъявляющими требования к стабильности питающего напряжения, надо использовать мост совместно со сглаживающими фильтрами, а при необходимости и стабилизаторами на выходе.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector