Меню

Углы напряжения тока диаграмма

Векторная диаграмма токов и напряжений

Цифровое представление динамических процессов затрудняет восприятие, усложняет расчет выходных параметров после изменения условий на входе или в результате выполненной обработки. Векторная диаграмма токов и напряжений помогает успешно решать обозначенные задачи. Ознакомление с теорией и практическими примерами поможет освоить данную технологию.

Диаграмма, поясняющая процесс короткого замыкания в трехфазной цепи счетчика электроэнергии

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

Круговая диаграмма

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

Линейная диаграмма

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Векторные диаграммы и комплексное представление

Такой инструментарий помогает строить наглядные графические схемы колебательных процессов. Аналогичный результат обеспечивает применение комплексных числовых выражений. В этом варианте, кроме оси с действительными, применяют дополнительный координатный отрезок с мнимыми значениями. Для представления вектора пользуются формулой A*ei(wt+f0), где:

  • А – длина;
  • W – угловая скорость;
  • f0 – начальный угол.

Значение действительной части равно A*cos*(w*t+f0). Это выражение описывает типичное гармоническое колебание с базовыми характеристиками.

Примеры применения

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Читайте также:  При каком токе варят алюминий

Дифракция

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Построение векторной диаграммы напряжений и токов

Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

  • резистор: Ur=Im*R*cos w*t;
  • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
  • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.

При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

Диаграмма напряжений и токов на отдельных элементах

Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

Решение векторного уравнения

На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

Векторное отображение процессов в параллельном колебательном контуре, резонанс напряжений

В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

Специализированный редактор онлайн

В интернете можно найти программу для построения векторных диаграмм в режиме online.

Видео

Источник

Как построить векторную диаграмму токов и напряжений

Векторные диаграммы — метод графического расчета напряжений и токов в цепях переменного тока, в которых переменные напряжения и токи символически (условно) изображаются с помощью векторов.

В основе метода лежит тот факт, что всякую величину, меняющуюся по синусоидальному закону (смотрите — синусоидальные колебания), можно определить как проекцию на какое-то выбранное направление вектора, вращающегося вокруг своей начальной точки с угловой скоростью, равной угловой частоте колебаний изображаемой переменной величины.

Поэтому всякое переменное напряжение (или переменный ток), меняющееся по синусоидальному закону, можно изображать с помощью такого вектора, вращающегося с угловой скоростью, равной угловой частоте изображаемого тока, причем длина вектора в определенном масштабе изображает амплитуду напряжения, а угол — начальную фазу этого напряжения.

Если рассмотреть электрическую цепь, состоящую из последовательно соединенных источника переменного тока, резистора, индуктивности и конденсатора, где U – мгновенное значение переменного напряжения, а i – это ток в текущий момент времени, причем U изменяется по синусоидальному (косинусоидальному) закону, то для тока можно записать:

Согласно закону сохранения заряда, в любой момент времени ток в цепи имеет одно и то же значение. Следовательно на каждом элементе будет падать напряжение: UR– на активном сопротивлении, UC – на конденсаторе, и UL – на индуктивности. Согласно второму правилу Кирхгофа, напряжение источника будет равно сумме падений напряжений на элементах цепи, и мы имеем право записать:

Заметим, что согласно закону Ома: I = U/R, и тогда U = I*R. Для активного сопротивления значение R определяется исключительно свойствами проводника, оно не зависит ни от тока, ни от момента времени, следовательно ток совпадает по фазе с напряжением, и можно записать:

А вот конденсатор в цепи переменного тока обладает реактивным емкостным сопротивлением, и напряжение на конденсаторе все время отстает по фазе от тока на Пи /2 , значит пишем:

Катушка, обладающая индуктивностью, в цепи переменного тока выступает реактивным индуктивным сопротивлением, и напряжение на катушке в любой момент времени опережает по фазе ток на Пи/ 2 , следовательно, для катушки запишем:

Можно записать теперь сумму падений напряжений, но в общем виде для приложенного к цепи напряжения можно записать:

Видно, что здесь имеет место некий сдвиг фаз, связанный с реактивной составляющей общего сопротивления цепи при протекании по ней переменного тока.

Поскольку в цепях переменного тока и ток и напряжение изменяются по закону косинуса, причем мгновенные значения отличаются между собой лишь фазой, то физики придумали в математических расчетах рассматривать токи и напряжения в цепях переменного тока как векторы, поскольку тригонометрические функции можно описать через векторы. Итак, запишем напряжения в виде векторов:

Используя метод векторных диаграмм, можно вывести, например, закон Ома для данной последовательной цепи в условиях протекания по ней переменного тока.

Согласно закону сохранения электрического заряда, в любой момент времени ток во всех частях данной цепи одинаков, так отложим же векторы токов, построим векторную диаграмму токов:

Пусть в направлении оси Х будет отложен ток Im – амплитудное значение тока в цепи. Напряжение на активном сопротивлении совпадает по фазе с током, значит эти векторы будут сонаправленными, отложим их из одной точки.

Напряжение на конденсаторе отстает на Пи/2 от тока, следовательно откладываем его под прямым углом вниз, перпендикулярно вектору напряжения на активном сопротивлении.

Напряжение на катушке опережает на Пи /2 ток, следовательно откладываем его под прямым углом вверх, перпендикулярно вектору напряжения на активном сопротивлении. Допустим, что для нашего примера UL>UC.

Поскольку мы имеем дело с векторным уравнением, сложим векторы напряжений на реактивных элементах, и получим разницу. Она будет для нашего примера (мы приняли что UL>UC) направлена вверх.

Прибавим теперь вектор напряжения на активном сопротивлении, и получим, по правилу векторного сложения, вектор суммарного напряжения. Так как брали максимальные значения, то и получим вектор амплитудного значения общего напряжения.

Так как ток менялся по закону косинуса, то напряжение тоже меняется по закону косинуса, но со сдвигом фаз. Между током и напряжением есть постоянный сдвиг фаз.

Запишем закон Ома для общего сопротивления Z (импеданса):

Из векторных изображений по Теореме Пифагора можем записать:

После элементарных преобразований получим выражение для полного сопротивления Z цепи переменного тока, состоящей из R, C и L:

Тогда получим выражение для закона Ома для цепи переменного тока:

Читайте также:  Троллейбус проверка утечки тока

Заметим, что наибольшее значение тока получатся в цепи при резонансе в условиях, когда:

Косинус фи из наших геометрических построений получается:

Источник

Построение векторных диаграмм

Достаточно сложным и чаще всего не изучаемым аспектом темы переменный ток является метод построения векторных диаграмм. Анализируя вынужденные электромагнитные колебания, мы уже обсудили сдвиг тока и напряжения на реактивных сопротивлениях (катушка индуктивности и конденсатор) по сравнению с активным сопротивлением (резистор). Тогда одним из задаваемых вопросов задачи является вопрос о направлении суммарного тока или напряжения в данный конкретный момент времени. Для ответа на этот вопрос и используется метод построения векторных диаграмм.

Векторная диаграмма — это изображение гармонически изменяющихся величин (текущего тока и напряжения) в виде векторов на плоскости.

Векторная диаграмма

Рис. 1. Векторная диаграмма

Построение векторных диаграмм происходит в прямоугольной декартовой системе координат. Построение начинается с проведения вектора, численно равного амплитудному значению тока в цепи. Данный вектор сонаправим в осью ОХ (рис. 1.1).

Т.к. напряжение на активном сопротивлении находится в одной фазе с током, то вектор амплитуды напряжения сонаправлен с вектором тока (рис. 1.2. красный).

На катушке напряжение опережает ток, поэтому отложим вектор амплитуды напряжения на катушке (\displaystyle <<U data-lazy-src=

\displaystyle \cos \varphi =\frac<R data-lazy-src=

  • \displaystyle Z— полное сопротивление цепи.
  • Вывод: задачи на данную тематику касаются поиска сдвига фаз между колебаниями силы тока и напряжения через график (рис. 1.4) или через соотношение (3), а также поиска полного напряжения в цепи также через график (рис. 1.4) или через соотношение (2).

    Источник

    

    Углы напряжения тока диаграмма

    Совокупность радиус-векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения, токи и т. д., называется векторной диаграммой. Векторные диаграммы наглядно иллюстрируют ход решения задачи. При точном построении векторов можно непосредственно из диаграммы определить амплитуды и фазы искомых величин. Приближенное (качественное) построение диаграмм при аналитическом решении служит надежным контролем корректности хода решения и позволяет легко определить квадрант, в котором находятся определяемые векторы.

    При построении векторных диаграмм для цепей с последовательным соединением элементов за базовый (отправной) вектор следует принимать вектор тока (см. лекцию № 8), а к нему под соответствующими углами подстраивать векторы напряжений на отдельных элементах. Для цепей с параллельным соединением элементов за базовый (отправной) вектор следует принять вектор напряжения (см. лекцию № 8), ориентируя относительно него векторы токов в параллельных ветвях.

    Для наглядного определения величины и фазы напряжения между различными точками электрической цепи удобно использовать топографические диаграммы. Они представляют собой соединенные соответственно схеме электрической цепи точки на комплексной плоскости, отображающие их потенциалы. На топографической диаграмме, представляющей собой в принципе векторную диаграмму, порядок расположения векторов напряжений строго соответствует порядку расположения элементов в схеме, а вектор падения напряжения на каждом последующем элементе примыкает к концу вектора напряжения на каждом предыдущем элементе.

    В качестве примера построим векторную диаграмму токов, а также топографическую диаграмму потенциалов для схемы, расчет которой был приведен в лекции № 5 (см. рис. 1).

    При данных параметрах и заданном напряжении на входе схемы найденные значения токов (см. лекцию № 5) равны: ; ; .

    При построении векторной диаграммы зададимся масштабами токов и напряжений (см. рис. 2). Векторную диаграмму можно строить, имея запись комплекса в показательной форме, т.е. по значениям модуля и фазы . Однако на практике удобнее проводить построения, используя алгебраическую форму записи, поскольку при этом вещественная и мнимая составляющие комплексной величины непосредственно откладываются на соответствующих осях комплексной плоскости, определяя положение точки на ней.

    Построение векторной диаграммы токов осуществляется непосредственно на основании известных значений их комплексов. Для построения топографической диаграммы предварительно осуществим расчет комплексных потенциалов (другой вариант построения топографической диаграммы предполагает расчет комплексов напряжений на элементах цепи с последующим суммированием векторов напряжений вдоль контура непосредственно на комплексной плоскости).

    При построении топографической диаграммы обход контуров можно производить по направлению тока или против. Чаще используют второй вариант.

    В этом случае с учетом того, что в электротехнике принято, что ток течет от большего потенциала к меньшему, потенциал искомой точки равен потенциалу предыдущей плюс падение напряжения на элементе между этими точками. Если на пути обхода встречается источник ЭДС, то потенциал искомой точки будет равен потенциалу предыдущей плюс величина этой ЭДС, если направление обхода совпадает с направлением ЭДС, и минус величина ЭДС, если не совпадает. Это вытекает из того, что напряжение на источнике ЭДС имеет направление, противоположное ЭДС.

    Обозначив на схеме по рис. 1 точки между элементами цепи e и a и приняв потенциал точки а за нуль( ), определим потенциалы этих точек:

    Таким образом, в результате проведенных вычислений получено, что . Но разность потенциалов точек е и а равно напряжению U, приложенному к цепи, а оно равно 120 В. Таким образом, второй закон Кирхгофа выполняется, а следовательно, вычисления выполнены верно. В соответствии с полученными результатами строится топографическая диаграмма на рис. 2. Следует обратить внимание на ориентацию векторов, составляющих топографическую диаграмму, относительно векторов тока: для резистивных элементов соответствующие векторы параллельны, для индуктивного и емкостных – ортогональны.

    В заключение заметим, что векторы напряжений ориентированы относительно точек топографической диаграммы противоположно положительным направлениям напряжений относительно соответствующих точек электрической цепи. В этой связи допускается не указывать на топографической диаграмме направления векторов напряжений.

    Потенциальная диаграмма

    Потенциальная диаграмма применяется при анализе цепей постоянного тока. Она представляет собой график распределения потенциала вдоль участка цепи или контура, при этом по оси абсцисс откладываются сопротивления резистивных элементов, встречающихся на пути обхода ветви или контура, а по оси ординат – потенциалы соответствующих точек. Таким образом, каждой точке рассматриваемого участка или контура соответствует точка на потенциальной диаграмме.

    Рассмотрим построение потенциальной диаграммы на примере схемы на рис. 3.

    При параметрах схемы ; ; ; ; и токи в ветвях схемы равны: ; ; .

    Построим потенциальную диаграмму для контура abcda.

    Для выбора масштаба по оси абсцисс просуммируем сопротивления резисторов вдоль рассматриваемого контура: после чего определим потенциалы точек контура относительно потенциала произвольно выбранной точки a, потенциал которой принят за нуль:

    Таким образом, координаты точек потенциальной диаграммы: а(0;0);b(4;-20); c(4;17); d(7;2). С учетом выбранных масштабов на рис. 4 построена потенциальная диаграмма для выбранного контура.

    Преобразование линейных электрических схем

    Для упрощения расчета и повышения наглядности анализа сложных электрических цепей во многих случаях рационально подвергнуть их предварительному преобразованию. Очевидно, что преобразование должно приводить к упрощению исходной схемы за счет уменьшения числа ее ветвей и (или) узлов. Такое преобразование называется целесообразным. При этом при любых способах преобразований должно выполняться условие неизменности токов в ветвях участков схемы, не затронутых этими преобразованиями. Из последнего вытекает, что, если преобразованию подвергаются участки цепи, не содержащие источников энергии, то мощности в исходной и эквивалентной схемах одинаковы. Если в преобразуемые участки входят источники энергии, то в общем случае мощности в исходной и преобразованной цепях будут различны.

    Рассмотрим наиболее важные случаи преобразования электрических цепей.

    1. Преобразование последовательно соединенных элементов

    Рассмотрим участок цепи на рис. 5,а. При расчете внешней по отношению к этому участку цепи данную ветвь можно свести к виду на рис. 5,б, где

    При этом при вычислении эквивалентной ЭДС k-я ЭДС берется со знаком “+”, если ее направление совпадает с направлением эквивалентной ЭДС, и “-”, если не совпадает.

    2. Преобразование параллельно соединенных ветвей

    Пусть имеем схему на рис. 6,а.

    Согласно закону Ома для участка цепи с источником ЭДС

    ; (3)
    , (4)

    причем со знаком “+” в (4) записываются ЭДС и ток , если они направлены к тому же узлу, что и ЭДС ; в противном случае они записываются со знаком “-”.

    3. Взаимные преобразования “треугольник-звезда”

    В ряде случаев могут встретиться схемы, соединения в которых нельзя отнести ни к последовательному, ни к параллельному типу (см. рис. 7). В таких случаях преобразования носят более сложный характер: преобразование треугольника в звезду и наоборот.

    Преобразовать треугольник в звезду – значит заменить три сопротивления, соединенных в треугольник между какими-то тремя узлами, другими тремя сопротивлениями, соединенными в звезду между теми же точками. При этом на участках схемы, не затронутых этими преобразованиями, токи должны остаться неизменными.

    Без вывода запишем формулы эквивалентных преобразований

    1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
    2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш.шк., 1978. –528с.

    Контрольные вопросы и задачи

    1. Что представляют собой векторные диаграммы?
    2. Что такое топографические диаграммы, для чего они служат?
    3. В чем сходство и различие топографической и потенциальной диаграмм?
    4. Какой практический смысл преобразований электрических цепей?
    5. В чем заключается принцип эквивалентности преобразований?
    6. Построить потенциальные диаграммы для левого и внешнего контуров цепи рис.3.

  • Полагая в цепи на рис. 8 известными ток и параметры всех ее элементов, качественно построить векторную диаграмму токов и топографическую диаграмму потенциалов для нее.
  • Определить входное сопротивление цепи на рис. 8, если .

    Определить сопротивления ветвей треугольника, эквивалентного звезде между узлами a,c и d в цепи на рис. 8.

    Определить сопротивления ветвей звезды, эквивалентной треугольнику в цепи на рис. 8, состоящему из элементов , и .

    Источник

  • Углы напряжения тока диаграмма

    Как построить векторную диаграмму токов и напряжений

    Векторные диаграммы — метод графического расчета напряжений и токов в цепях переменного тока, в которых переменные напряжения и токи символически (условно) изображаются с помощью векторов.

    В основе метода лежит тот факт, что всякую величину, меняющуюся по синусоидальному закону (смотрите — синусоидальные колебания), можно определить как проекцию на какое-то выбранное направление вектора, вращающегося вокруг своей начальной точки с угловой скоростью, равной угловой частоте колебаний изображаемой переменной величины.

    Поэтому всякое переменное напряжение (или переменный ток), меняющееся по синусоидальному закону, можно изображать с помощью такого вектора, вращающегося с угловой скоростью, равной угловой частоте изображаемого тока, причем длина вектора в определенном масштабе изображает амплитуду напряжения, а угол — начальную фазу этого напряжения.

    Если рассмотреть электрическую цепь, состоящую из последовательно соединенных источника переменного тока, резистора, индуктивности и конденсатора, где U – мгновенное значение переменного напряжения, а i – это ток в текущий момент времени, причем U изменяется по синусоидальному (косинусоидальному) закону, то для тока можно записать:

    Согласно закону сохранения заряда, в любой момент времени ток в цепи имеет одно и то же значение. Следовательно на каждом элементе будет падать напряжение: UR– на активном сопротивлении, UC – на конденсаторе, и UL – на индуктивности. Согласно второму правилу Кирхгофа, напряжение источника будет равно сумме падений напряжений на элементах цепи, и мы имеем право записать:

    Заметим, что согласно закону Ома: I = U/R, и тогда U = I*R. Для активного сопротивления значение R определяется исключительно свойствами проводника, оно не зависит ни от тока, ни от момента времени, следовательно ток совпадает по фазе с напряжением, и можно записать:

    А вот конденсатор в цепи переменного тока обладает реактивным емкостным сопротивлением, и напряжение на конденсаторе все время отстает по фазе от тока на Пи /2 , значит пишем:

    Катушка, обладающая индуктивностью, в цепи переменного тока выступает реактивным индуктивным сопротивлением, и напряжение на катушке в любой момент времени опережает по фазе ток на Пи/ 2 , следовательно, для катушки запишем:

    Можно записать теперь сумму падений напряжений, но в общем виде для приложенного к цепи напряжения можно записать:

    Видно, что здесь имеет место некий сдвиг фаз, связанный с реактивной составляющей общего сопротивления цепи при протекании по ней переменного тока.

    Поскольку в цепях переменного тока и ток и напряжение изменяются по закону косинуса, причем мгновенные значения отличаются между собой лишь фазой, то физики придумали в математических расчетах рассматривать токи и напряжения в цепях переменного тока как векторы, поскольку тригонометрические функции можно описать через векторы. Итак, запишем напряжения в виде векторов:

    Используя метод векторных диаграмм, можно вывести, например, закон Ома для данной последовательной цепи в условиях протекания по ней переменного тока.

    Согласно закону сохранения электрического заряда, в любой момент времени ток во всех частях данной цепи одинаков, так отложим же векторы токов, построим векторную диаграмму токов:

    Пусть в направлении оси Х будет отложен ток Im – амплитудное значение тока в цепи. Напряжение на активном сопротивлении совпадает по фазе с током, значит эти векторы будут сонаправленными, отложим их из одной точки.

    Напряжение на конденсаторе отстает на Пи/2 от тока, следовательно откладываем его под прямым углом вниз, перпендикулярно вектору напряжения на активном сопротивлении.

    Напряжение на катушке опережает на Пи /2 ток, следовательно откладываем его под прямым углом вверх, перпендикулярно вектору напряжения на активном сопротивлении. Допустим, что для нашего примера UL>UC.

    Поскольку мы имеем дело с векторным уравнением, сложим векторы напряжений на реактивных элементах, и получим разницу. Она будет для нашего примера (мы приняли что UL>UC) направлена вверх.

    Прибавим теперь вектор напряжения на активном сопротивлении, и получим, по правилу векторного сложения, вектор суммарного напряжения. Так как брали максимальные значения, то и получим вектор амплитудного значения общего напряжения.

    Так как ток менялся по закону косинуса, то напряжение тоже меняется по закону косинуса, но со сдвигом фаз. Между током и напряжением есть постоянный сдвиг фаз.

    Запишем закон Ома для общего сопротивления Z (импеданса):

    Из векторных изображений по Теореме Пифагора можем записать:

    Читайте также:  Взаимодействие замкнутых контуров с токами

    После элементарных преобразований получим выражение для полного сопротивления Z цепи переменного тока, состоящей из R, C и L:

    Тогда получим выражение для закона Ома для цепи переменного тока:

    Заметим, что наибольшее значение тока получатся в цепи при резонансе в условиях, когда:

    Косинус фи из наших геометрических построений получается:

    Источник

    

    Векторная диаграмма токов и напряжений

    Цифровое представление динамических процессов затрудняет восприятие, усложняет расчет выходных параметров после изменения условий на входе или в результате выполненной обработки. Векторная диаграмма токов и напряжений помогает успешно решать обозначенные задачи. Ознакомление с теорией и практическими примерами поможет освоить данную технологию.

    Диаграмма, поясняющая процесс короткого замыкания в трехфазной цепи счетчика электроэнергии

    Разновидности векторных диаграмм

    Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

    С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

    Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

    Круговая диаграмма

    Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

    Линейная диаграмма

    Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

    Векторные диаграммы и комплексное представление

    Такой инструментарий помогает строить наглядные графические схемы колебательных процессов. Аналогичный результат обеспечивает применение комплексных числовых выражений. В этом варианте, кроме оси с действительными, применяют дополнительный координатный отрезок с мнимыми значениями. Для представления вектора пользуются формулой A*ei(wt+f0), где:

    • А – длина;
    • W – угловая скорость;
    • f0 – начальный угол.

    Значение действительной части равно A*cos*(w*t+f0). Это выражение описывает типичное гармоническое колебание с базовыми характеристиками.

    Примеры применения

    В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

    Механика, гармонический осциллятор

    Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

    Формулы для расчета основных параметров гармонического осциллятора

    К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

    Свободные гармонические колебания без затухания

    Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

    Гармонический осциллятор с затуханием и внешней вынуждающей силой

    В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

    Читайте также:  При каком токе варят алюминий

    Расчет электрических цепей

    Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

    Векторная диаграмма для схемы соединений без нейтрального провода – звезда

    Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

    Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

    Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

    Преобразование Фурье

    Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

    Сложение двух синусоидальных колебаний

    В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

    Фурье-образ прямоугольного сигнала

    В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

    Дифракция

    Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

    Построение векторной диаграммы напряжений и токов

    Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

    • резистор: Ur=Im*R*cos w*t;
    • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
    • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.

    При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

    Диаграмма напряжений и токов на отдельных элементах

    Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

    Решение векторного уравнения

    На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

    Векторное отображение процессов в параллельном колебательном контуре, резонанс напряжений

    В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

    Специализированный редактор онлайн

    В интернете можно найти программу для построения векторных диаграмм в режиме online.

    Видео

    Источник

    Правила построения векторных диаграмм

    Как было выше сказано, совокупность векторов напряжений, токов и ЭДС одной частоты для конкретной электрической цепи называют векторной диаграммой. Векторная диаграмма дает наглядное представление о действующих значениях, начальных фазах и углах сдвига фаз указанных величин. При вращении векторов с одной угловой скоростью w= 2pf их взаимное положение не меняется с течением времени и зависит только от углов сдвига фаз. Это обстоятельство позволяет строить векторные диаграммы для сложных цепей, основываясь на элементарных векторных диаграммах для отдельных R,L,C-элементов, изображенных на рис. 1.7.

    Ниже приведены правила построения векторных диаграмм для исследуемых цепей однофазного и трехфазного синусоидального тока.

    1). Перед построением конкретной векторной диаграммы необходимо вычертить и проанализировать схему замещения, эквивалентную принципиальной электроизмерительной схеме рассматриваемой цепи. (Для каждой лабораторной работе в разделе 3 представлена своя схема замещения). На схеме замещения условно изображают каждый элемент R, L, C данной цепи или параметры этого элемента: активное – R, индуктивное – XL и емкостное – XC сопротивления, наносят буквенные обозначения всех токов и напряжений и показывают стрелками их направления для отдельных участков цепи.

    GВнимание!Стрелки, показывающие направления токов и напряжений на схеме замещения не путать с векторами тех же величин на векторной диаграмме.

    Читайте также:  Промежуточное реле 110в пост тока

    2). Векторные диаграммы напряжений Uk и токов Ij (где k и j – соответственно, текущие индексы векторов напряжений и токов) необходимо чертить в достаточно крупных масштабах, выбрав их самостоятельно, отдельно для напряжений mU и токов mI, то есть число вольт в 1 см для напряжений и число ампер в 1 см для токов:

    где lU,k и lI,j – соответственно, длина k-го вектора напряжения и j-го вектора тока.

    Выбор масштаба производится понаибольшей измеренной или вычисленной величине напряжения и тока, которая в виде соответствующего вектора должна иметь длину в пределах 8 ¸ 12 см на листе тетради или 10 ¸ 15 см на листе бумаги формата А4.

    Пример

    Пусть наибольшая величина напряжения в опыте составляет Umax=160 В, а тока Imax=1,2 А. Если наибольшие величины напряжения и тока разделить на установленные выше пределы вектора 8 ¸ 10 см, то из (1.4), (1.5) получим пределы предполагаемых масштабов для напряжения:

    mU = 160 В/(8¸10 см) = 20¸16 В/см

    mI = 1,2 А/(8¸10см) = 0,15¸0,12 А/см.

    Определенные таким образом пределы масштабов для mU и mI усредняют, выбирая масштабы из основного ряда чисел: 1; 2; 2,5; 4; 5или масштабы, кратные этим числам, умноженным на 10 в положительной или отрицательной степени натурального ряда (1,2,3…), то есть из следующего общего ряда чисел:

    0,01 0,02 0,025 0,04 0,05
    0,1 0,2 0,25 0,4 0,5
    2,5

    (В данном примере общий приведен ряд чисел от 0,01 до 500).

    В нашем примере выбранные масштабы для напряжений и токов составляют
    mU = 20 В/см и mI = 0,1 А/см.

    При этом вектор напряжения Umax=160 В будет иметь длину

    а длина вектора тока Imax=1,2 А:

    Длины остальных векторов определяют аналогично, путем деления соответствующей величины напряжения Uk или тока Ij на выбранный масштаб напряжения или тока:

    3). Направления векторов должны быть указаны стрелками. Каждый вектор напряжения или тока должен иметь соответствующее буквенное обозначение и индекс, такие же, как на эквивалентной схеме замещения.

    При выполнении векторных диаграмм для трехфазных систем векторы токов и напряжений должны иметь обозначения фаз, например: IA, ICA, UB, UBC и т.д. Совпадающие по фазе векторы чертятся рядом расположенными на расстоянии примерно 0,5÷1 мм. Для трехфазных симметричных систем векторы одной фазы должны быть сдвинуты относительно векторов двух других фаз на угол ±120 0 . Для вычерчивания векторов под нужными углами пользуются транспортиром или откладывают на бумаге в клетку определенное число клеток (сантиметров), как показано на рис. 1.7 (общееправило: четыре клетки (или см.) от центра – вниз и из этой нижней точки по 7 клеток (см.) – влево и вправо).

    GВнимание!При неверном сдвиге векторов, отличном от ±120 0 в трехфазной симметричной системе, векторная диаграмма будет построенанеправильно и еепотребуется вычертить заново.

    Обозначения векторов непосредственно на векторной диаграмме или на схеме замещения могут не иметь точек вверху букв. В этом случае будут обозначены не векторы, а сами величины (длины) векторов токов или напряжений.

    4). Первым вектором на векторной диаграмме чертится в выбранном масштабе вектор той величины (напряжения или тока ), которая присутствует на схеме замещения в сравнительно меньшем числе. Этот вектор называется опорным или базовым. Базовый вектор чертится по стандартным направлениям, или горизонтально вправо (чаще всего) или вертикально вверх.

    5). Далее наносятся в выбранных масштабах векторы остальных токов и напряжений для отдельных участков (элементов) цепи. При этом пользуются элементарными векторными диаграммами для активного R, индуктивного XL и емкостного XC сопротивлений, как показано на рис. 1.8

    6). После следует найти результирующие векторы тока и напряжения , пользуясь правилами геометрического сложения этих величин, как показано на рис. Приложении 4.

    Для трехфазных цепей целесообразно строить результирующие векторы в виде непосредственной геометрической разности двух векторов (Приложение 4).

    7). В заключение, на векторной диаграмме следует отложить фазовый угол j между результирующими векторами тока и напряжения. На этом векторная диаграмма для данной цепи считается построенной.

    Рис. 1.7. Правила построения трех векторов на осях А, В, С,
    сдвинутых относительно друг друга на 120 0

    Рис. 1.8. Эквивалентные схемы замещения и элементарные векторные диаграммы
    для отдельных R, L, C-элементов

    а) – для активного сопротивления (резистора) R; б) – для индуктивности L;
    в) – для конденсатора С.

    Источник

    Adblock
    detector