Трехфазная полная мощность при симметричной нагрузке формула

№40 Мощность трехфазной цепи и способы ее измерения.

Активная и реактивная мощности трехфазной цепи, как для любой сложной цепи, равны суммам соответствующих мощностей отдельных фаз:

где IA, UA, IB, UB, IC, UC – фазные значения токов и напряжений.

В симметричном режиме мощности отдельных фаз равны, а мощность всей цепи может быть получена путем умножения фазных мощностей на число фаз:

В полученных выражениях заменим фазные величины на линейные. Для схемы звезды верны соотношения Uф/Uл/√3, Iф=Iл, тогда получим:

Для схемы треугольника верны соотношения: Uф=Uл ; Iф=Iл / √3 , тогда получим:

Следовательно, независимо от схемы соединения (звезда или треугольник) для симметричной трехфазной цепи формулы для мощностей имеют одинаковый вид:

В приведенных формулах для мощностей трехфазной цепи подразумеваются линейные значения величин U и I, но индексы при их обозначениях не ставятся.

Активная мощность в электрической цепи измеряется прибором, называемым ваттметром, показания которого определяется по формуле:

где Uw, Iw — векторы напряжения и тока, подведенные к обмоткам прибора.

Для измерения активной мощности всей трехфазной цепи в зависимости от схемы соединения фаз нагрузки и ее характера применяются различные схемы включения измерительных приборов.

Для измерения активной мощности симметричной трехфазной цепи при-меняется схема с одним ваттметром, который включается в одну из фаз и измеряет активную мощность только этой фазы (рис. 40.1). Активная мощность всей цепи получается путем умножения показания ваттметра на число фаз: P=3W=3UфIфcos(φ). Схема с одним ваттметром может быть использована только для ориентированной оценки мощности и неприменима для точных и коммерческих измерений.

Для измерения активной мощности в четырехпроводных трехфазных цепях (при на¬личии нулевого провода) применяется схема с тремя приборами (рис. 40.2), в которой произво¬дится измерение активной мощности каждой фазы в отдельности, а мощность всей цепи оп¬ределяется как сумма показаний трех ваттметров:

Для измерения активной мощности в трехпроводных трехфазных цепях (при отсутствии нулевого провода) применяется схема с двумя приборами (рис. 40.3).

При отсутствии нулевого провода линейные (фазные) ток связаны между собой урав¬нением 1-го закона Кирхгофа: IA+IB+IC=0. Сумма показаний двух ваттметров равна:

Таким образом, сумма показаний двух ваттметров равна активной трехфазной мощности, при этом показание каждого прибора в отдельности зависит не только величины нагрузки но и от ее характера.

На рис. 40.4 показана векторная диаграмма токов и напряжений для сим¬метричной нагрузки. Из диаграммы следует, что показания отдельных ваттметров могут быть определены по формулам:

Анализ полученных выражений позволяет сделать следующие выводы. При активной нагрузке (φ = 0), показания ваттметров равны (W1 = W2).

При активно-индуктивной нагрузке(0 ≤ φ ≤ 90°) показание первого ватт-метра меньше, чем второго (W1 60° показание первого ваттметра становится отрицательным (W1

Источник

Расчет активной, реактивной и полной мощности в трехфазных цепях

Активной мощностью (часто просто мощностью) трехфазной систе­мы называется сумма активных мощностей всех фаз источника энер­гии, равная сумме активных мощностей всех фаз приемника.

В симметричной трехфазной системе, т. е. в системе с симметричны­ми генератором и приемником, при любой схеме их соединений для каждой фазы мощности источника энергии и приемника одинаковые. В этом случае Р = ЗРф и для каждой из фаз справедлива формула ак­тивной мощности синусоидального тока:

где у — угол сдвига фаз между фазными напряжением и током.

Заменив действующие значения фазных тока и напряжения линей­ными при соединении фаз источника энергии и приемника звездой и треугольником, получим одно и то же выражение для активной мощности симметричной трехфазной системы:

(2)

В промышленных установках приемники обычно симметричные или почти симметричные, т. е. мощность может быть вычислена по (2).

В общем случае реактивной мощностью трехфазной системы назы­вается сумма реактивных мощностей всех фаз источника энергии, равная сумме реактивных мощностей всех фаз приемника. Реактивная мощ­ность симметричной трехфазной системы

(3)

или после замены действующих значений фазных тока и напряжения линейными

(4)

Полная мощность симметричной трехфазной системы

(5)

Комплексной мощностью трехфазной системы называется сумма комплексных мощностей всех фаз источника энергии, равная сумме комплексных мощностей всех фаз приемника.

Мощность в трехфазной цепи можно определить по формулам , , где — комплекс напряжения i-той фазы («a», «b» или «c» для схемы «звезда» и «ab», «bc» или «ca» для схемы «треугольник»); — сопряженный комплекс тока i-той фазы.

К расчёту (определению) трёхфазной мощности нагрузки методом двух ваттметров.

При переходе к средней мощности и действующим значениям тока и напряжения имеем:

По разности показаний двух ваттметров можно определить реактивную мощность трёхфазной системы.

Пусть активно – индуктивная нагрузка симметрична.

Угол между векторами и равен

Угол между векторами и равен

При симметричной нагрузке мощность можно измерить одним ваттметром.

Источник

Мощность трехфазной цепи при несимметричной нагрузке

Трехпроводная цепь (продолжение)

Соединение фаз приемника треугольником

Один из основных способов заметного изменения мощности при отключенной нагрузке – переключение схемы соединения источника и приемника со звезды на треугольник и наоборот.

При включении начала одной фазы с концом другой с образованием замкнутого контура получают соединение треугольником.

Соединяют треугольником фазы приемника, т.е. три фазы приемника включены между линейными проводами рис 1.

Фазные напряжения приемника равны соответствующим линейным напряжениям источника питания:

т.е.

фазные токи:

Положительное направление фазных напряжений , и совпадает с положительным направлением фазных токов.

При соединении треугольником приемника получается замкнутый контур, поэтому:

Фазные напряжения определяются как линейные генератора:

Определение фазных и линейных токов

Токи в фазах определяются по закону Ома:

.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector