Меню

Ток опережает по фазе напряжение какая цепь

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 43-2 (продолжение) Переменный ток

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.

1. Резистор в цепи переменного тока


Сопротивление R называют активным, потому что цепь с таким сопротивлением поглощает энергию.

Активное сопротивлениеустройство, в котором энергия электрического тока необратимо преобразуется в другие виды энергии (внутреннюю, механическую)

Пусть напряжение в цепи меняется по закону: u = Umcos ωt ,

тогда сила тока меняется по закону: i = u/R = IRcosωt

u – мгновенное значение напряжения;

i – мгновенное значение силы тока;

IR — амплитуда тока, протекающего через резистор.

Связь между амплитудами тока и напряжения на резисторе выражается соотношением RIR = UR


Колебания силы тока совпадают по фазе с колебаниями напряжения. (т.е. фазовый сдвиг между током и напряжением на резисторе равен нулю).

2. Конденсатор в цепи переменного тока

При включении конденсатора в цепь постоянного напряжения сила тока равна нулю, а при включении конденсатора в цепь переменного напряжения сила тока не равна нулю. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

Соотношение между амплитудами тока IC и напряжения

Ток опережает по фазе напряжение на угол π/2.

3. Катушка в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для той же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения.

Соотношение между амплитудами тока IL и напряжения UL:

Ток отстает по фазе от напряжения на угол π/2.

Теперь можно построить векторную диаграмму для последовательного RLC-контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через I. Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги.

Векторная диаграмма на рисунке построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Векторная диаграмма для последовательной RLC-цепи

Из рисунка видно, что

Из выражения для I видно, что амплитуда тока принимает максимальное значение при условии

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω электрической цепи называется электрическим резонансом. При резонансе

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).

При последовательном резонансе (ω = ω) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:

Рисунок иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде напряжения источника от его частоты ω. Кривые на рисунке называются резонансными кривыми.

Источник

Опережающий и запаздывающий ток — Leading and lagging current

Опережающий и запаздывающий ток — это явления, возникающие в результате переменного тока . В схеме с переменным током значения напряжения и тока изменяются синусоидально. В схемах этого типа термины опережение, запаздывание и синфазность используются для описания тока по отношению к напряжению. Ток находится в фазе с напряжением, когда между синусоидами отсутствует фазовый сдвиг, описывающий их поведение во времени. Обычно это происходит, когда нагрузка, потребляющая ток, является резистивной.

В потоке электроэнергии важно знать, какой ток опережает или отстает, потому что он создает реактивную мощность в системе, а не активную (реальную) мощность. Он также может играть важную роль в работе трехфазных электроэнергетических систем.

Читайте также:  Фотки тока бока для обоев

Содержание

  • 1 Обозначение угла
  • 2 запаздывающий ток
  • 3 Ведущий ток
  • 4 Визуализация опережающего и запаздывающего тока
  • 5 Исторические документы по ведущим и запаздывающим токам
  • 6 См. Также
  • 7 Примечания
  • 8 ссылки

Обозначение угла

Обозначение угла может легко описать опережающий и запаздывающий ток:

В этом уравнении значение тета является важным фактором для опережающего и запаздывающего тока. Как упоминалось во введении выше, опережающий или запаздывающий ток представляет собой временной сдвиг между синусоидальными кривыми тока и напряжения, который представлен углом, на который кривая опережает или отстает от того места, где она была бы изначально. Например, если θ равно нулю, кривая будет иметь нулевую амплитуду в нулевой момент времени. Использование комплексных чисел — это способ упростить анализ определенных компонентов в цепях RLC . Например, их очень легко преобразовать между полярными и прямоугольными координатами. Начиная с полярной записи, может представлять либо векторную, либо прямоугольную запись, оба из которых имеют величину 1. ∠ θ <\ Displaystyle \ angle \ theta><\ Displaystyle \ angle \ theta data-lazy-src=

В цепях с преимущественно индуктивной нагрузкой ток отстает от напряжения. Это происходит потому, что в индуктивной нагрузке именно индуцированная электродвижущая сила вызывает протекание тока. Обратите внимание, что в приведенном выше определении ток создается напряжением. Индуцированная электродвижущая сила вызвана изменением магнитного потока, связывающего катушки индуктора.

Ведущий ток

А ∠ θ знак равно А ∠ δ + ( β ) <\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета)><\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета) data-lazy-src=

В цепях с преимущественно емкостной нагрузкой ток опережает напряжение. Это верно, потому что ток сначала должен течь к двум пластинам конденсатора, где хранится заряд. Только после накопления заряда на пластинах конденсатора устанавливается разница напряжений. Таким образом, поведение напряжения зависит от поведения тока и от того, сколько заряда накапливается. Вот почему формальное определение гласит, что ток производит напряжение.

Визуализация опережающего и запаздывающего тока

Простая векторная диаграмма с двумерной декартовой системой координат и векторами может использоваться для визуализации опережающего и запаздывающего тока в фиксированный момент времени. В действительной комплексной системе координат один период синусоидальной волны соответствует полному кругу в комплексной плоскости. Поскольку напряжение и ток имеют одинаковую частоту, в любой момент времени эти величины могут быть легко представлены в виде стационарных точек на окружности, а стрелки, идущие от центра окружности к этим точкам, называются векторами. Поскольку относительная разница во времени между функциями постоянна, у них также есть постоянная разница углов между ними, представленная углом между точками на окружности.

Исторические документы о ведущих и запаздывающих токах

Ранний источник данных является статьей от 1911 Американской академии искусств и наук по Артур Э. Кеннелла . Кеннелли использует обычные методы для решения векторных диаграмм для колебательных цепей, которые также могут включать в себя цепи переменного тока.

Источник

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Читайте также:  Генераторы электрического тока получаемый ток

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник



Ток опережает по фазе напряжение какая цепь

Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

Читайте также:  Как регулируется ток возбуждения синхронных генераторов

В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

При имеем и , как это объяснено выше.

Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе.

Если активным сопротивлением цепи нельзя пренебречь по сравнению с емкостным , то ток опережает напряжение по времени меньше, чем на (сдвиг фаз меньше , рис. 308). Для этого случая, как показывает расчет, сдвиг фаз может быть вычислен по формуле

При имеем и , как это объяснено выше.

Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

Источник

Ток опережает по фазе напряжение какая цепь

Ток опережает по фазе напряжение какая цепь

Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

При имеем и , как это объяснено выше.

Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

Читайте также:  Рельсовые цепи переменного тока частотой 25 гц с путевым реле дсш 13

Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе.

Если активным сопротивлением цепи нельзя пренебречь по сравнению с емкостным , то ток опережает напряжение по времени меньше, чем на (сдвиг фаз меньше , рис. 308). Для этого случая, как показывает расчет, сдвиг фаз может быть вычислен по формуле

При имеем и , как это объяснено выше.

Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

Источник



Опережающий и запаздывающий ток — Leading and lagging current

Опережающий и запаздывающий ток — это явления, возникающие в результате переменного тока . В схеме с переменным током значения напряжения и тока изменяются синусоидально. В схемах этого типа термины опережение, запаздывание и синфазность используются для описания тока по отношению к напряжению. Ток находится в фазе с напряжением, когда между синусоидами отсутствует фазовый сдвиг, описывающий их поведение во времени. Обычно это происходит, когда нагрузка, потребляющая ток, является резистивной.

В потоке электроэнергии важно знать, какой ток опережает или отстает, потому что он создает реактивную мощность в системе, а не активную (реальную) мощность. Он также может играть важную роль в работе трехфазных электроэнергетических систем.

Содержание

  • 1 Обозначение угла
  • 2 запаздывающий ток
  • 3 Ведущий ток
  • 4 Визуализация опережающего и запаздывающего тока
  • 5 Исторические документы по ведущим и запаздывающим токам
  • 6 См. Также
  • 7 Примечания
  • 8 ссылки

Обозначение угла

Обозначение угла может легко описать опережающий и запаздывающий ток:

В этом уравнении значение тета является важным фактором для опережающего и запаздывающего тока. Как упоминалось во введении выше, опережающий или запаздывающий ток представляет собой временной сдвиг между синусоидальными кривыми тока и напряжения, который представлен углом, на который кривая опережает или отстает от того места, где она была бы изначально. Например, если θ равно нулю, кривая будет иметь нулевую амплитуду в нулевой момент времени. Использование комплексных чисел — это способ упростить анализ определенных компонентов в цепях RLC . Например, их очень легко преобразовать между полярными и прямоугольными координатами. Начиная с полярной записи, может представлять либо векторную, либо прямоугольную запись, оба из которых имеют величину 1. ∠ θ <\ Displaystyle \ angle \ theta><\ Displaystyle \ angle \ theta data-lazy-src=

Отстающий ток

А ∠ θ знак равно А ∠ δ — ( β ) <\ Displaystyle А \ угол \ тета = А \ угол \ дельта - (\ бета)><\ Displaystyle А \ угол \ тета = А \ угол \ дельта - (\ бета) data-lazy-src=

В цепях с преимущественно индуктивной нагрузкой ток отстает от напряжения. Это происходит потому, что в индуктивной нагрузке именно индуцированная электродвижущая сила вызывает протекание тока. Обратите внимание, что в приведенном выше определении ток создается напряжением. Индуцированная электродвижущая сила вызвана изменением магнитного потока, связывающего катушки индуктора.

Ведущий ток

А ∠ θ знак равно А ∠ δ + ( β ) <\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета)><\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета) data-lazy-src=

В цепях с преимущественно емкостной нагрузкой ток опережает напряжение. Это верно, потому что ток сначала должен течь к двум пластинам конденсатора, где хранится заряд. Только после накопления заряда на пластинах конденсатора устанавливается разница напряжений. Таким образом, поведение напряжения зависит от поведения тока и от того, сколько заряда накапливается. Вот почему формальное определение гласит, что ток производит напряжение.

Визуализация опережающего и запаздывающего тока

Простая векторная диаграмма с двумерной декартовой системой координат и векторами может использоваться для визуализации опережающего и запаздывающего тока в фиксированный момент времени. В действительной комплексной системе координат один период синусоидальной волны соответствует полному кругу в комплексной плоскости. Поскольку напряжение и ток имеют одинаковую частоту, в любой момент времени эти величины могут быть легко представлены в виде стационарных точек на окружности, а стрелки, идущие от центра окружности к этим точкам, называются векторами. Поскольку относительная разница во времени между функциями постоянна, у них также есть постоянная разница углов между ними, представленная углом между точками на окружности.

Исторические документы о ведущих и запаздывающих токах

Ранний источник данных является статьей от 1911 Американской академии искусств и наук по Артур Э. Кеннелла . Кеннелли использует обычные методы для решения векторных диаграмм для колебательных цепей, которые также могут включать в себя цепи переменного тока.

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование
Читайте также:  Трансформатор переменного тока из 220 в 110

Как сказал.

Есть только два способа прожить жизнь. Первый — будто чудес не существует. Второй — будто кругом одни чудеса.

А.Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 43-2 (продолжение) Переменный ток

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.

1. Резистор в цепи переменного тока


Сопротивление R называют активным, потому что цепь с таким сопротивлением поглощает энергию.

Активное сопротивлениеустройство, в котором энергия электрического тока необратимо преобразуется в другие виды энергии (внутреннюю, механическую)

Пусть напряжение в цепи меняется по закону: u = Umcos ωt ,

тогда сила тока меняется по закону: i = u/R = IRcosωt

u – мгновенное значение напряжения;

i – мгновенное значение силы тока;

IR — амплитуда тока, протекающего через резистор.

Связь между амплитудами тока и напряжения на резисторе выражается соотношением RIR = UR


Колебания силы тока совпадают по фазе с колебаниями напряжения. (т.е. фазовый сдвиг между током и напряжением на резисторе равен нулю).

2. Конденсатор в цепи переменного тока

При включении конденсатора в цепь постоянного напряжения сила тока равна нулю, а при включении конденсатора в цепь переменного напряжения сила тока не равна нулю. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

Соотношение между амплитудами тока IC и напряжения

Ток опережает по фазе напряжение на угол π/2.

3. Катушка в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для той же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения.

Соотношение между амплитудами тока IL и напряжения UL:

Ток отстает по фазе от напряжения на угол π/2.

Теперь можно построить векторную диаграмму для последовательного RLC-контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через I. Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги.

Векторная диаграмма на рисунке построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Векторная диаграмма для последовательной RLC-цепи

Из рисунка видно, что

Из выражения для I видно, что амплитуда тока принимает максимальное значение при условии

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω электрической цепи называется электрическим резонансом. При резонансе

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).

При последовательном резонансе (ω = ω) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:

Рисунок иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде напряжения источника от его частоты ω. Кривые на рисунке называются резонансными кривыми.

Источник

Adblock
detector