Меню

Тип разряда вокруг проводов по которым течет ток под высоким напряжением

Какой тип разряда происходит вокруг проводов, по которому течёт ток

Какой тип разряда происходит вокруг проводов, по которому течёт ток под высоким напряжением? Искровой Тлеющий Коронный Дуговой.

Слайд 20 из презентации «Электрический ток в различных средах»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Электрический ток в различных средах.ppt» можно в zip-архиве размером 207 КБ.

Электрический ток

«Электрические цепи 8 класс» — Для измерения работы электрического тока нужны три прибора: T – время. 2. Вольтметр. 5. Каковы преимущества и недостатки последовательной цепи? 1. Амперметр. Физика. Параллельной? 3. Часы. Домашнее задание. Тренажер. Работа. Тест. На практике работу электрического тока измеряют специальными приборами – счетчиками.

««Электрический ток» 10 класс» — Закон Ома. Слово «электричество» происходит от греческого слова «электрон». Электрический ток. Вопросы. Наэлектризованные тела. Между напряжением и силой тока зависимость. Тело заряжено отрицательно. Тело обладает положительным зарядом. Повторение. Тела электризуются при контакте (соприкосновении). Посмотри клип.

«Источники тока» — Универсальный блок питания. Гальванический элемент. Электрический ток в проводнике. Внешний вид установки. Современный мир. Необходимость наличия источника тока. Домашний проект. Источники тока. Вольтов столб. Первая электрическая батарея. Из нескольких гальванических элементов можно составить батарею.

««Электрический ток» 8 класс» — Алессандро Волта. За единицу сопротивления принимают 1 Ом. Сила тока в участке цепи прямо пропорциональна напряжению. Электрическое напряжение на концах проводника. Единица измерения силы тока. Ампер Андре Мари. Напряжение. Вольтметр. Амперметр. Применение электрического тока. Электрический ток. Сопротивление прямо пропорционально длине проводника.

«Электрический ток в проводниках» — Опорные понятия. Электрический ток. Сила тока в проводнике. Направление электрического тока. Движущийся электрический заряд. Виды взаимодействия. Сила тока. Главные условия существования электрического тока. Движение электронов. Интенсивность движения заряженных частиц.

«Источники электрического тока» — Физика 8 класс. Электрофорная машина. Классификация источников тока. Аккумулятор — химический источник тока многоразового действия. Сравни опыты, проводимые на рисунках. Что у вас получится? Сделай батарейку. Первая электрическая батарея появилась в 1799 году. Герметичные малогабаритные аккумуляторы (ГМА).

Всего в теме «Электрический ток» 19 презентаций

Источник



Коронный разряд красивое, но вредное явление в энергетике

Вы когда-нибудь видели вокруг высоковольтных проводов красивое свечение, а в сырую погоду, проходя мимо ЛЭП, слышали не очень приятное потрескивание? Все это является проявлением коронного разряда. В этой статье я расскажу механизм его образования, а так же почему его так не любят все энергетики. Итак, начнем.

Что такое коронный разряд

Сначала давайте дадим определение этому эффекту, итак Коронный разряд — это самостоятельный разряд в газовой среде , который появляется в сильно неоднородных полях у электродов со значительной кривизной поверхности (острая грань).

Главным условием начала образования разряда является то, что возле острия обязательно должна быть повышенная напряженность электрического поля, чем на остальном пути между электродами, которые как раз и создают разность потенциалов.

Само по себе воздушное пространство является диэлектриком и при стандартном давлении максимальное значение электрической напряженности равно 30 кВ/см . Именно при подобных показателях на кончике электрода начинает формироваться еле различимое свечение, которое внешне похоже на корону. Из-за этого такой тип разряда и стали именовать коронным.

Читайте также:  Чему равняется потеря напряжения

yandex.ru

Что примечательно данный процесс ионизации обычно протекает только вокруг коронирующего электрода, а второй электрод при этом выглядит обычно (корона отсутствует).

yandex.ru

Как формируется коронный разряд

Итак, теперь давайте разберем поэтапно процесс образования данного разряда (будет рассмотрена общепринятая теория).

Произвольная молекула воздуха случайным образом ионизируется, в результате этого отделяется электрон, который ускоряется под воздействием электромагнитного поля возле острого края. И электрон набирает такое количество энергии, что при столкновении со следующей молекулой происходит ионизация новой молекулы (при этом так же отделяется электрон).

А это значит, что общее количество заряженных частиц, которые активно перемещаются в магнитном поле вокруг острия, растет лавинообразным образом.

yandex.ru

В случае того, если коронирующим электродом стал отрицательный электрод (катод), то данную корону именуют отрицательной, а лавина электронов в таком случае станет перемещаться от острия в направлении к положительному электроду.

Как только перемещающиеся электроны попадают в область, где напряженность электрического поля уже не позволяет поддерживать лавинообразную ионизацию, электроны начинают рекомбинировать с молекулами воздуха, при этом формируются отрицательные ионы, оные становятся носителями тока во внешней от короны области. Корона с отрицательным зарядом отличается равномерным свечением.

yandex.ru

Если источником короны оказывается положительный электрод (анод), то лавина электронов перемещается к острию, а ионы наоборот стремятся наружу от острия.

В результате этого процесса на определенном расстоянии от острия, где электромагнитное поле ослабевает, носителями заряда остаются лишь положительно заряженные ионы, устремляющиеся в сторону отрицательного электрода.

И получается, что отличительной особенностью положительной короны являются стримеры, которые могут обретать вид искровых каналов.

yandex.ru

В чем вред коронного разряда

Формирование коронного разряда на ВЛ приводит к увеличению потерь электроэнергии. Для того, чтобы избежать этого явления, в зависимости от класса напряжения, фазу разделяют на некоторое количество отдельных проводников. Это позволяет снизить локальную напряженность возле проводов и не допустить формирование коронного разряда в принципе.

yandex.ru

Помимо этого могут быть применены анти-коронные кольца, которые внешне представляют из себя тороиды, выполненные из проводящего металла. При этом эти изделия крепятся обычно к терминалам либо другой высоковольтной части оборудования.

Где используют этот эффект

Данный процесс научились использовать и во благо. Так, например, коронный разряд применяется в электростатических очистителях газов для отыскания дефектов (трещин) в готовых изделиях. В копировальной технике для зарядки, разрядки фотобарабанов и переноски тонера на бумагу.

Заключение

Это все, что я хотел вам рассказать о таком несомненно красивом явлении как коронный заряд. Если статья оказалась вам интересна, то оцените ее лайком и спасибо за ваше драгоценное внимание!

Источник

Электрический ток и закон Ома

теория по физике ? постоянный ток

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.
Читайте также:  Тиристоры для регулировки напряжения

Носители электрического тока в различных средах

Среда Носители электрического тока
Металлы Свободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) Положительные и отрицательные ионы
Газы Ионы и электроны
Полупроводники Электроны и дырки (атом, лишенный одного электрона)
Вакуум Электроны

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Основные параметры постоянного тока

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I = q t . . = Δ q Δ t . . = N q e t .

N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).

Читайте также:  Падение напряжения при зарядке аккумулятора

Заряд, проходящий по проводнику за время t при силе тока, равной I:

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q = I t = 0 , 2 · 120 = 24 ( К л )

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δ q = I 1 + I 2 2 . . Δ t

Сила тока и скорость движения электронов:

n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .

Отсюда сопротивление второго проводника равно:

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Источник

Adblock
detector