Стабилизаторы с чистой синусоидой

Чистая синусоида VS её ступенчатая аппроксимация. Часть I

Временами приходится пользоваться устройствами для автономного или резервного питания. Это могут быть автономные инверторные бензогенераторы, автомобильные инверторы, источники бесперебойного питания в режиме работы от батарей. В общем, все те устройства, в составе которых присутствует инвертор. И все бы ничего, но не все подобные устройства выдают на выходе синусоидальное переменное напряжение, на которое, собственно, и рассчитано все электрооборудование. То есть переменное-то оно у всех, а вот форма этого напряжения может быть далеко не синусоидальная.

В таких случаях в характеристиках устройства, в строке «Форма выходного напряжения» пишут «Ступенчатая аппроксимация синусоиды» или «Модифицированная синусоида» или «Квазисинусоида» или как-то еще.

Это означает, что там совсем не синусоида, а разнополярные прямоугольные импульсы, которые следуют с определенной паузой. Ниже на осциллограммах показаны синусоидальная форма напряжения в бытовой электросети (слева) и осциллограммы так называемой «квазисинусоиды», снятые с разных устройств.

Форма напряжения: а) в бытовой электросети; б) на выходе ИБП Back-UPS CS 500; в) на выходе инвертора 12/220 Mean Well

Нетрудно заметить, что амплитуды импульсов на осциллограммах с квазисинусоидой отличаются и составляют в первом случае 350–360 В, во втором — 290–300 В. Но их ширина подобрана таким образом, что среднеквадратичное значение получаемого переменного напряжения соответствует 225–230 В.

Казалось бы, нет проблем. Частота напряжения 50 Гц, среднеквадратичное значение соответствует 230 В. Но это только на первый взгляд. В сигнале, который отличается от синусоиды, присутствуют гармоники, т. е. получаемые разнополярные импульсы состоят не только из сигнала частотой 50 Гц, но и из сигналов более высоких частот, кратных основной частоте 50 Гц (150, 250, 350 и т. д.). Не будем углубляться в теорию, а просто скажем, что при запитывании оборудования подобной «квазисинусоидой» на него подается напряжение не только частотой 50 Гц, но и частотой 150 Гц, 250 и далее по нарастающей. При этом амплитуды этих напряжений хоть и уменьшаются с ростом частоты, но все же могут иметь достаточно высокий уровень. Уровень этих гармоник зависит от ширины импульса, его амплитуды и скорости нарастания.

Спектрограммы гармоник напряжения с выхода ИБП Back-UPS CS 500 (слева) и инвертора 12/220 Mean Well (справа) при нагрузке 25 Вт

Далее мы подробно рассмотрим различное электрооборудование и попробуем определить, насколько для него критична форма питающего напряжения.

Нагревательное электрооборудование

Оборудование, которое представляет собой активную нагрузку и не имеет в составе каких-либо регулирующих электронных устройств (диммеров), конденсаторов, индуктивностей, абсолютно не восприимчиво к форме питающего напряжения. Например, лампы накаливания, утюги, паяльники и другие нагревательные приборы. Но, к сожалению, такое оборудование всегда в меньшинстве.

Люминесцентные, светодиодные лампы и светильники

В конструкции таких ламп всегда присутствует устройство (драйвер), преобразующее напряжение 220–230 В в необходимое для питания светоизлучающих компонентов. Естественно, рядовой пользователь не знает принцип работы драйвера конкретной лампы или светильника и не может предположить, как они поведут себя при питании не синусоидальным напряжением, ведь они не рассчитаны на такие условия.

Проведем эксперимент, для статистики возьмем несколько ламп и светильников различных моделей и сравним их потребляемую мощность и другие параметры при подключении к обычной розетке и к устройству с «прямоугольной аппроксимацией синусоиды». Таким устройством будет источник бесперебойного питания фирмы APC с полной мощностью 500 В*А.

По результатам тестов заметно, что электрические характеристики ламп изменяются при питании квазисинусом. В большинстве случаев изменяются они в худшую сторону — увеличивается ток потребления и уменьшается коэффициент мощности. Критический случай, если в светодиодной лампе в качестве токоограничивающего элемента установлен конденсатор. При питании такой лампы квазисинусом со значительным уровнем гармоник потребляемая мощность может увеличиваться в разы, значит, и ток через светодиоды возрастает. Это можно наблюдать и визуально по изменению яркости свечения. Конечно, лампа в таком режиме прослужит недолго. Что интересно, при подключении такой лампы к автомобильному инвертору (12/230 В) подобного увеличения мощности не наблюдалось. Это связано с тем, что используемый для тестов инвертор выдавал разнополярные импульсы с меньшим уровнем гармоник, чем источник бесперебойного питания (рис. 2).

Напрашивается вывод: подключение светодиодных и люминесцентных ламп к источнику с прямоугольной апроксимацией синусоиды — это своего рода лотерея. Нет гарантии продолжительной работы ламп, и срок их службы будет зависеть от применяемого драйвера и конкретных параметров квазисинуса.

Устройства с трансформаторными источниками питания

Следующая группа электрооборудования — устройства, имеющие в своем составе трансформаторы. Для проведения тестов были выбраны два устройства — отечественный трансформатор ТС-40-2 и сетевой трансформаторный адаптер с выходным стабилизированным напряжением. Результаты тестов в таблице.

Схема классического трансформаторного источника питания

В тестировании трансформаторных источников питания помимо источника бесперебойного питания использовался инверторный преобразователь, который тоже имеет на выходе квазисинусоиду, но их параметры немного отличаются, о чем было сказано выше.

По результатам экспериментов можно наблюдать, что трансформаторные источники питания при питании их квазисинусом ведут себя вполне приемлемо и даже хорошо. Первое, что можно отметить это уменьшение тока холостого хода. И, как оказалось, чем больше уровни гармоник в питающем напряжении, тем этот ток меньше. Это связано с тем, что трансформатор в большей степени представляет собой индуктивную нагрузку, а реактивное сопротивление индуктивности с ростом частоты возрастает.

Из отрицательных моментов можно выделить следующее. Даже если у источника со ступенчатой аппроксимацией синусоиды среднеквадратичное напряжение будет составлять 230 В, но амплитуда импульсов будет завышена, то и на выходе выпрямителя мы получим завышенное напряжение. Это связано с тем, что фильтрующий конденсатор С (рис. 3) стремится зарядиться до амплитудного значения выпрямленного напряжения. Так, в указанной выше схеме при смене питающего синусоидального напряжения на квазисинусоиду напряжение на выходе повышалось с 16 до 19 В, что, естественно, повышало общую потребляемую мощность. Данный эффект наблюдался при питании этой схемы от источника бесперебойного питания, у которого при среднеквадратическом значении напряжения в 230 В амплитуда импульсов достигает 350 В.

Однако при питании данной схемы от автомобильного инвертора с амплитудой импульсов около 300 В наблюдалось даже некоторое уменьшение выходного напряжения. При этом среднеквадратичное значение напряжения инвертора также составляло 230 В.

Резюмируя, можно сказать, что, кроме возможного повышения напряжения во вторичных цепях трансформаторных источников питания, других негативных последствий для трансформаторов от квазисинусоиды не выявлено. Превышение же напряжения может в некоторой степени увеличить нагрев источника питания в целом, а будет это превышение или нет зависит от модели используемого ИБП или отдельного инвертора.

Необходимо отметить, что при питании трансформатора ступенчатой аппроксимацией синусоиды прослушивается характерный «звонкий» гул от трансформатора. «Звонкость» звука как раз и говорит о том, что в питающем напряжении есть составляющие с более высокими частотами, чем 50 Гц. Кроме возможных неприятных слуховых ощущений для человека этот звук не несет никаких негативных последствий для трансформатора.

В следующей части статьи будет рассмотрено поведение другого электрооборудования при питании его напряжением с формой, отличной от синусоидальной.

Источник

Стабилизатор напряжения с чистым синусом или его альтернатива

Многие владельцы домов, применяющие для отопления газовые котлы, имеют проблемы с их неисправностями. Котел может выйти из строя в морозный зимний день, а причина неисправности не совсем понятна.

Наиболее частой причиной неисправности газовых отопительных котлов становится внезапное отключение электричества в сети, либо недостаточное качество снабжения электроэнергией. Оно может проявляться низким или высоким напряжением сети, внезапными скачками напряжения, возникающими высокочастотными помехами, а также неправильной формой синусоиды напряжения сети.

Недостаточно чистая синусоида напряжения не дает возможности электрическим устройствам обеспечить функциональность в полном объеме, что может привести к неисправностям и снижению эксплуатационного периода. Это может относиться и к функционированию газовых отопительных котлов. Такие проблемы часто возникают на даче или в загородном доме.

Чувствительными к качеству питания элементами, обеспечивающими функционирование газового котла, являются:

  • Газовая горелка.
  • Насос циркуляции теплоносителя.
  • Автоматическое управление системой.

Например, в автоматическом управлении котлом может возникнуть неисправность вследствие резких скачков напряжения. А наиболее распространенной причиной неисправностей является неправильная форма синусоиды напряжения. Искажение этой синусоиды негативно влияет на функционирование насосов циркуляции, которые также обладают повышенной чувствительностью к низкому напряжению. Недостаточное качество напряжения не позволяет насосам функционировать на полную мощность. Это может привести к чрезмерному нагреванию и быстрому износу.

Методы обеспечения исправной работы

В результате, чтобы создать все необходимые условия непрерывной работы газового котла отопительной системы, и не заморозить батареи в зимние морозы, необходимо сразу решить несколько сложных задач:

  • Создать условия непрерывной подачи электрической энергии.
  • Обеспечить форму «чистого синуса» поставляемого напряжения.
  • Защитить оборудование от колебаний напряжения и высокочастотных помех.

Стабилизатор с «чистым синусом»

Обычный стабилизатор напряжения предотвратит только небольшую часть негативных факторов. Однако, он хорошо справляется с помехами и перепадами напряжения в сети, выравнивает его величину до номинального значения, удовлетворяющего норме 220 вольт. Но он не даст «чистого синуса» тока и непрерывную подачу электрической энергии.

Следует отметить, что имеются образцы таких стабилизаторов, имеющих возможность создать синусоиду напряжения хорошего качества, и могут использоваться для обеспечения защиты газовых отопительных котлов. Стоимость стабилизаторов с «чистым синусом» невысокая, и вполне приемлемая для рядового потребителя.

В качестве примера можно назвать стабилизатор Энергия АРС. Он сконструирован именно для обеспечения защиты котлов отопления. Его особенности устройства дают возможность в полной мере защитить чувствительную к качеству электрического питания автоматическую систему газовых котлов от различных негативных факторов.

Эти стабилизаторы выделяют в лидеры среди адаптированных образцов устройств для эксплуатации совместно с газовыми котлами следующие параметры:

  • Пятиступенчатая блокировка от аварийных случаев.
  • Реле блокировки, обладающие высокой скоростью.
  • Системы подавления помех высокой частоты.
  • Широкий интервал напряжений на входе стабилизатора.

Но существуют также и другие устройства, способные обеспечить качественную эксплуатацию котлов отопления. В качестве альтернативного варианта можно выделить такое устройство, как источник бесперебойного питания. Он способен в малые сроки создать передачу электрической энергии за счет внутренних или внешних аккумуляторов. Чем выше емкость аккумуляторов и их количество, тем больший период времени может работать котел отопления при отсутствии электричества.

Некоторые модели источников питания ИБП способны обеспечивать «чистый синус» для питания котлов. Например, модель источника «On-line». Но стоимость таких устройств довольно высока.

Альтернатива стабилизатору

Таким альтернативным вариантом для стабилизатора может стать инвертор, или как его называют, преобразователь напряжения. Он гарантирует выдачу чистой синусоиды напряжения, и исполняет задачу стабилизации и выравнивания напряжения, а также создает непрерывную подачу электрической энергии при ее отсутствии от батарей аккумуляторов, количество и емкость которых можно по желанию повысить.

Например, инверторы «Энергия» обладают следующими преимуществами:

  • Повышенный срок службы и высокая надежность.
  • Повышенное качество сборки и базы элементов.
  • Высокое быстродействие при переключении между режимами.
  • Блокировка от разрядки батарей аккумуляторов и чрезмерной зарядки.
  • Перегрузочная защита.
  • Широкий интервал выравнивания высокого и низкого напряжения.
  • Повышенное время действия при отсутствии электроэнергии.
  • Возможность работы в холодных помещениях на морозе.

Источник

Нужен ли инвертор с чистым синусом?

Попробуем разобраться с вопросом о форме выходного напряжения у ИБП и инверторов.

Очень часто встречаются рекомендации, что если нужно организовать питание (резервное питание) каких-то бытовых приборов и устройств, то нужен инвертор с «чистым» синусом. Эти рекомендации зачастую подтверждаются теоретическими доказательствами и размышлениями. Но что показывает практика применения инверторов с модифицированной синусоидой? А практика показывает то, что практически все (любые) электроприборы и устройства нормально работают от модифицированной синусоиды. Теоретики заявляют, что электродвигатели не работают от модифицированной синусоиды или начинают перегреваться, но на практике это не так. На самом деле, все, у кого не запустился электродвигатель от модифицированной синусоиды допустили ошибку в выборе мощности инвертора. Так как, например, компрессор бытового холодильника мощностью всего 100 Ватт при старте имеет очень большой пусковой ток. И может гарантированно запуститься только от инвертора, способного обеспечить мощность не менее 1000 Ватт (то есть в 10 раз больше).

Или при подключении циркуляционного насоса, насос начинает работать с непривычным звуком… Потребитель пугается и ошибочно воспринимает этот непривычный звук признаком неправильной работы насоса. Но ничего кроме непривычного звука в работе насоса не меняется. Насос работает и выполняет всё, что от него требуется…

И так практически с любым прибором или устройством. От инвертора с модифицированной синусоидой работает практически всё. Но всё же с некоторыми исключениями. Так, например от инвертора могут не работать котлы отопления. И связано это вовсе не с модифицированной синусоидой, а с тем, что некоторые котлы европейских производителей требуют соблюдения фазировки напряжения. У инвертора напряжение на выходе не фазное (отсутствуют ноль и фаза). И из за этого электроника котла неправильно определяет горение пламени и выдаёт ошибку. Для таких котлов нужны инверторы с пробросом нуля.

Ещё от инвертора с модифицированной синусоидой могут не работать плазменные телевизоры (не путать с LCD). Ну и некоторая телекоммуникационная аппаратура (в основном профессиональная). Так, что в быту инвертор с модифицированной синусоидой вполне работоспособный вариант чтобы обеспечить электропитанием бытовые приборы в случае кратковременного отсутствия сетевого напряжения.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector