Меню

Способы получения трехфазного напряжения

Трёхфазный переменный ток. Получение трёхфазного тока

Трёхфазный переменный ток. Получение трёхфазного тока

Работающие в настоящее время электростанции производят трёхфазный ток. Главное его преимущество заключается в лёгкости получения вращающегося магнитного поля. Вращающееся поле используется в самом простом и надёжном двигателе в мире – асинхронном. Трёхфазный ток легко производить и экономично передавать.

Трёхфазной системой переменного тока называется совокупность трёх однофазных токов одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1/3 периода (или 120 градусов.
Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора.

23. А)Звезда. Б)Треугольник

24.Электроизмерительные приборы различаются по следующим признакам:

По роду измеряемой величины; по роду тока;по степени точности; по принципу действия; по способу получения отсчета; по характеру применения.

Кроме этих признаков, электроизмерительные приборы можно также отличать: по способу монтирования; по способу защиты от внешних магнитных или электрических полей; по выносливости в отношении перегрузок; по пригодности к применению при различных температурах; по габаритным размерам и другим признакам.

Для измерения электрических величин применяются различные электроизмерительные приборы, а именно: тока — амперметр; напряжения — вольтметр;

электрического сопротивления — омметр, мосты сопротивлений; мощности — ват­тметр; электрической энергии — счетчик; частоты перемен­ного тока — частотомер; коэффициента мощности — фа­зометр.

По роду тока приборы делятся на приборы постоянного тока, приборы переменного тока и приборы постоянного и переменного тока.

По степени точности приборы делятся на восемь классов: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4. Цифры указывают значение допустимой приведенной погрешности в процентах.

По принципу действия приборы подразделяются на: магнитоэлектрические; электромагнитные; электродинамические (ферромагнитные); индукционные;

и др. По способу получения отсчета приборы могут быть с непосредственным отсчётом и самозаписывающие. По характеру применения приборы делятся на стационарные, переносные и для подвижных установок.

25.Измерение тока. Для измерения тока в цепи амперметр или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Пуск в ход асинхронных двигателей

При пуске двигателя в ход должны по возможности удовлетворяться следующие основные требования: процесс пуска должен быть простым и осуществляться без сложных пусковых устройств, пусковой момент должен быть достаточно большим, а пусковые токи — по возможности малыми. Иногда к этим требованиям добавляются и другие, обусловленные особенностями конкретных приводов, в которых используются двигатели: необходимость плавного пуска, наибольшего пускового момента и пр. Практически используются следующие способы пуска: непосредственное подключение обмотки статора к сети (прямой пуск); понижение напряжения, подводимого к обмотке статора при пуске; подключение к обмотке ротора пускового реостата.

Прямой пуск применяется для пуска асинхронных двигателей с короткозамкнутым ротором

Подстанция, в которой стоят повышающие трансформаторы, повышает электрическое напряжение при соответствующем снижении значения силы тока, в то время как понижающая подстанция уменьшает выходное напряжение при пропорциональном увеличении силы тока.

Необходимость в повышении передаваемого напряжения возникает в целях многократной экономии металла, используемого в проводах ЛЭП, и уменьшения потерь на активном сопротивлении. Действительно, необходимая площадь сечения проводов определяется только силой проходящего тока и отсутствием возникновения коронного разряда. Также уменьшение силы проходящего тока влечёт за собой уменьшение потери энергии, которая находится в прямой квадратичной зависимости от значения силы тока. С другой стороны, чтобы избежать высоковольтного электрического пробоя, применяются специальные меры: используются специальные изоляторы, провода разносятся на достаточное расстояние и т. д. Основная же причина повышения напряжения состоит в том, что чем выше напряжение, тем большую мощность и на большее расстояние можно передать по линии электропередачи.

Читайте также:  Светодиод номинальный ток напряжение

42.Электрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.

43.Электронная лампа, радиолампа — электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами.

Радиолампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т. п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках и аудиотехнике.

44.Газоразрядная лампа — источник света, излучающий энергию в видимом диапазоне. Физическая основа — электрический разряд в газах. В последнее время принято называть газоразрядные лампы разрядными лампами.

Разрядные лампы обладают высокой эффективностью преобразования электрической энергии в световую. Эффективность измеряется отношением люмен/Ватт.

45.Транзистор полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи.

Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

46.Полупроводниковые материалы — вещества с чётко выраженными свойствами полупроводников в широком интервале температур, включая комнатную (

300 К), являющиеся основой для создания полупроводниковых приборов. Удельная электрическая проводимость при 300 К составляет 10-4?10

10 Ом?1·см?1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

47. Электронные выпрямители –эл. устройство служащие для преобразования энергию переменного тока в энергию постоянного тока.

Трёхфазный переменный ток. Получение трёхфазного тока

Работающие в настоящее время электростанции производят трёхфазный ток. Главное его преимущество заключается в лёгкости получения вращающегося магнитного поля. Вращающееся поле используется в самом простом и надёжном двигателе в мире – асинхронном. Трёхфазный ток легко производить и экономично передавать.

Трёхфазной системой переменного тока называется совокупность трёх однофазных токов одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1/3 периода (или 120 градусов.
Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора.

23. А)Звезда. Б)Треугольник

24.Электроизмерительные приборы различаются по следующим признакам:

По роду измеряемой величины; по роду тока;по степени точности; по принципу действия; по способу получения отсчета; по характеру применения.

Кроме этих признаков, электроизмерительные приборы можно также отличать: по способу монтирования; по способу защиты от внешних магнитных или электрических полей; по выносливости в отношении перегрузок; по пригодности к применению при различных температурах; по габаритным размерам и другим признакам.

Для измерения электрических величин применяются различные электроизмерительные приборы, а именно: тока — амперметр; напряжения — вольтметр;

электрического сопротивления — омметр, мосты сопротивлений; мощности — ват­тметр; электрической энергии — счетчик; частоты перемен­ного тока — частотомер; коэффициента мощности — фа­зометр.

Читайте также:  Какими препаратами снять напряжение мышц

По роду тока приборы делятся на приборы постоянного тока, приборы переменного тока и приборы постоянного и переменного тока.

По степени точности приборы делятся на восемь классов: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4. Цифры указывают значение допустимой приведенной погрешности в процентах.

По принципу действия приборы подразделяются на: магнитоэлектрические; электромагнитные; электродинамические (ферромагнитные); индукционные;

и др. По способу получения отсчета приборы могут быть с непосредственным отсчётом и самозаписывающие. По характеру применения приборы делятся на стационарные, переносные и для подвижных установок.

25.Измерение тока. Для измерения тока в цепи амперметр или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Источник



Получение трехфазного тока

date image2014-02-24
views image15841

facebook icon vkontakte icon twitter icon odnoklasniki icon

Электрические цепи трехфазного переменного тока

Трехфазный электрический ток

Трехфазная цепь представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э.д.с. одинаковой частоты, отличающиеся по фазе одна от другой (φ = 120 о ) и создаваемые общим источником энергии. Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, слово фаза в электротехнике имеет два значения – угол φ и часть многофазной системы (отдельный фазный провод).

Основные преимущества трехфазной системы: возможность простого получения кругового вращающегося магнитного поля (это позволило создать электродвигатели переменного тока), экономичность и эффективность (мощность можно передать по трем фазным проводам без применения четвертого общего провода — нейтрали), а также возможность использования двух различных эксплуатационных напряжений в одной установке (фазного и линейного, которые обычно составляют 220 В и 380 В, соответственно).

История появления трехфазных электрических цепей связана с именем М.С. Доливо-Добровольского Петербургского ученого, который в 1886 г., доказав, что многофазные токи способны создавать вращающееся магнитное поле, предложил (запатентовал) конструкцию трехфазного электродвигателя.

Трехфазный ток является простейшей системой многофазных токов, способных создавать вращающееся магнитное поле. Этот принцип положен в основу работы трехфазных электродвигателей.

Предложив конструкцию электродвигателя переменного тока, М.С. Доливо-Добровольский разработал и все основные элементы трехфазной электрической цепи. Трехфазная цепь состоит из трехфазного генератора, трехфазной линии электропередач и трехфазных приемников.

В результате предложенной трехфазной системы электрического тока стало возможным эффективно преобразовывать электрический ток в механическую энергию.

Электрическую энергию трехфазного тока получают в синхронных трехфазных генераторах (рис. 27). Три обмотки 2 статора 1 смещены между собой в пространстве на угол 120°. Их начала обозначены буквами А, В, С, а концы – x, y, z. Ротор 3 выполнен в виде постоянного электромагнита, магнитное поле которого возбуждает постоянный ток I, протекающий по обмотке возбуждения 4. Ротор принудительно приводится во вращение от постороннего двигателя. При вращении магнитное поле ротора последовательно пересекает обмотки статора и индуктирует в них ЭДС, сдвинутые (но уже во времени) между собой на угол 120°.

Трехфазный синхронный генератор

Для симметричной системы ЭДС (рис. 28) справедливо

Волновая и векторная диаграммы симметричной системы ЭДС

На диаграмме изображена прямая последовательность чередования фаз (пересечение ротором обмоток в порядке А, В, С). При смене направления вращения чередование фаз меняется на обратное — А, С, В. От этого зависит направление вращения трехфазных электродвигателей.

Читайте также:  Схема регулятора напряжения буран 640

Существует два способа соединения обмоток (фаз) генератора и трехфазного приемника: «звезда» и «треугольник».

В генераторах трехфазного тока электрическая энергия генерируется в трех одинаковых обмотках, соединенных по схеме звезда. Чтобы сэкономить на проводах линии передачи электроэнергии от генератора к потребителю тянутся только три провода. Провод от общей точки соединения обмоток не тянется, т.к. при одинаковых сопротивлениях нагрузки (при симметричной нагрузке) ток в нем равен нулю.

Схема замещения трехфазной системы, соединенной «звездой»

Согласно первому закону Кирхгофа можно записать IO = IА+ IВ + IС.

При равенстве ЭДС в фазных обмотках генератора и при равенстве сопротивлений нагрузки (т.е. при равенстве значений токов IА,IВ,IС) в представленной на рисунке системе, с помощью векторных диаграмм можно показать, что результирующий ток IO в центральном проводнике будет равен нулю. Таким образом, получается, что в симметричных системах (когда сопротивления нагрузок одинаковы), центральный провод может отсутствовать и линия для передачи системы трехфазного тока может состоять только из трех проводов.

В распределительных низковольтных сетях, в которых присутствует много однофазных потребителей, обеспечение равномерной нагрузки каждой фазы становится не возможным, такие сети делаются четырехпроводными.

Для обеспечения электробезопасносности принято низковольтные потребительские сети (сети

Источник

Трехфазный ток

ПОЛУЧЕНИЕ ТРЕХФАЗНОГО ТОКА

Система трехфазного тока получила повсеместное применение, как обеспечивающая наиболее выгодную передачу энергии и позволяющая применять простые и падежные в работе трехфазные электродвигатели, генераторы и трансформаторы.

Основоположником трехфазного тока М. О. Доливо-Добровольским создан трехфазный генератор, трехфазный электродвигатель, трехфазный трансформатор и выполнена первая в мире передача энергии трехфазного тока. Трехфазной системой называется совокупность трех электрических цепей, э. д. с. которых имеют одинаковую частоту и сдвинуты по фазе одна от другой на 1 / 3 периода. При равенстве амплитуд э. д. с. трехфазная система называется симметричной.

Простейший генератор трехфазного тока (рис. 6-1) отличается от однофазного, что на якорь наложены три обмотки — катушки, сдвинутые друг относительно друга по окружности цилиндра на углы 120° . Обмотки генератора называются фазами.

При вращении якоря с неизменной скоростью в обмотках наводятся э. д. с. одной частоты и с одинаковыми амплитудами. За один оборот якоря э.д.с. каждой из обмоток пройдет полный цикл изменений, что соответствует периоду ( Т) э. д. с. Вследствие сдвига обмоток в пространстве на углы 120°э. д. с., наведенные в них, сдвинуты по фазе друг относительно друга

на 1 / 3 периода или на угол 2 / 3π. Если начало отсчета времени совпадает с началом периода э. д. с. первой фазы e A то ее можно выразить уравнением,

Рис 6-1. Простейший генератор трехфазного тока.

Электродвижущая сила второй фазы генератора е В , отстающая от э. д. с. е А на 1 / 3 периода, запишется:

Электродвижущая сила третьей фазы генератора е c, отстающая от э. д. с. е B на 1 / 3 периода или опережающая на 1 / 3 периода э. д. с. первой фазы е А, выразится уравнением

Графики этих э. д. с. показаны на рис. 6-2, а векторная диаграмма — на рис. 6-3.

Направления э. д. с. в обмотках генератора от концов фаз (зажимы X, У, Z) к началам их (зажимы А, В, С) примем за положительные.

Каждая обмотка трехфазного генератора может замыкаться на свою внеш

Рис. 6 -2. График симметричных э. д. с. трехфазной системы.

Рис. 6-3. Векторная диаграмма симметричных э. д. с .

нюю цепь. В этом случае получится несвязанная трехфазная шести проводная система. На практике обычно обмотки трехфазного генератора соединяются звездой или треугольником. В этом случае вместо шести проводов применяют три или четыре провода, что экономичней.

Источник

Adblock
detector