Меню

Схема решения задачи определения напряжений

Основные задачи расчета напряжений

Расчетная схема взаимодействия сооружения и основания

С учетом изложенного выше, при расчетах оснований и фундаментов промышленных и гражданских сооружений обычно используется следующая расчетная схема. Пусть имеется некоторое сооружение, передающее нагрузки на основание (рис. 8.1, а). Упростим задачу, выделив из этой системы отдельный фундамент шириной b, и заменим воздействие на него сооружения соответствующей комбинацией нагрузок (рис. 8.1, б). Тогда под действием этих нагрузок, с учетом веса фундамента Q и грунта на его обрезах G по подошве фундамента возникнут реактивные нормальные напряжения p(х), отражающие силы взаимодействия сооружения, фундамента и грунтов основания. Характер распределения этих напряжений по подошве фундамента, вообще говоря, не известен, однако должно соблюдаться условие равновесия действующих нагрузок и реактивных напряжений.

Рис. 8.1. Схема взаимодействия сооружения и основания (а); схема фундамента и реактивного напряжения по его подошве (б); расчетная схема передачи нагрузок ниже подошвы фундамента (в)

Поскольку подошва фундамента всегда заглубляется ниже поверхности земли, в уровне подошвы по сторонам от фундамента будет действовать еще некоторое равномерно распределенное напряжение q, соответствующее весу слоя грунта, равного глубине заложения фундамента d. Тогда можно считать, что на основание в плоскости, проходящей через подошву фундамента, действует нагрузка, составленная из эпюры напряжений р(х) в пределах подошвы фундамента и равномерно распределенной эпюры напряжений q (рис. 8.1, в).

Важно отметить, что до строительства сооружения в плоскости подошвы будущего фундамента уже действовали нормальные напряжения от веса грунта q, поэтому дополнительная нагрузка на основание, возникшая от строительства сооружения, будет определяться уже не полной величиной р(х), а разностью p(x) – q. Тогда напряжения в любой точке основания ниже подошвы фундамента могут быть определены как сумма напряжений от веса грунта, залегающего выше этой точки, и от дополнительной нагрузки под подошвой фундамента p(x) – q.

С другой стороны, при расчетах фундаментных конструкций исходят из того, что реактивная нагрузка отпора грунта, действующая на подошву фундамента, равна р(х). Следовательно, фундамент находится под действием сил, показанных на рис. 8.1, б.

Из изложенного вытекают основные задачи расчета напряжений:

1) распределение напряжений по подошве фундаментов и сооружений, а также по поверхности взаимодействия конструкций с массивами грунта, часто называемых контактными напряжениями;

2) распределение напряжений в массиве грунта от действия местной нагрузки, соответствующей контактным напряжениям;

3) распределение напряжений в массиве грунта от действия собственного веса, часто называемых природным давлением.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Метод узловых (потенциалов) напряжений

ads

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

Читайте также:  Стабилизатор напряжения оптимум 12000

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Источник

Рекомендации по решению нетрадиционных задач на расчет электрических цепей постоянного тока

Разделы: Физика

Решение задач — неотъемлемая часть обучения физике, поскольку в процессе решения задач происходит формирование и обогащение физических понятий, развивается физическое мышление учащихся и совершенствуется их навыки применения знаний на практике.

В ходе решения задач могут быть поставлены и успешно реализованы следующие дидактические цели:

  • Выдвижение проблемы и создание проблемной ситуации;
  • Обобщение новых сведений;
  • Формирование практических умений и навыков;
  • Проверка глубины и прочности знаний;
  • Закрепление, обобщение и повторение материала;
  • Реализация принципа политехнизма;
  • Развитие творческих способностей учащихся.

Наряду с этим при решении задач у школьников воспитываются трудолюбие, пытливость ума, смекалка, самостоятельность в суждениях, интерес к учению, воля и характер, упорство в достижении поставленной цели. Для реализации перечисленных целей особенно удобно использовать нетрадиционные задачи.

§1. Задачи по расчету электрических цепей постоянного тока

По школьной программе на рассмотрение данной темы очень мало отводится времени, поэтому учащиеся более или менее успешно овладевают методами решения задач данного типа. Но часто такие типы задач встречаются олимпиадных заданиях, но базируются они на школьном курсе.

К таким, нестандартным задачам по расчету электрических цепей постоянного тока можно отнести задачи, схемы которых:

1) содержат большое число элементов – резисторов или конденсаторов;

3) состоят из сложных смешанных соединений элементов.

В общем случае всякую цепь можно рассчитать, используя законы Кирхгофа. Однако эти законы не входят в школьную программу. К тому же, правильно решить систему из большого числа уравнений со многими неизвестными под силу не многим учащимся и этот путь не является лучшим способом тратить время. Поэтому нужно уметь пользоваться методами, позволяющими быстро найти сопротивления и емкости контуров.

§2. Метод эквивалентных схем

Метод эквивалентных схем заключается в том, что исходную схему надо представить в виде последовательных участков, на каждом из которых соединение элементов схемы либо последовательно, либо параллельно. Для такого представления схему необходимо упростить. Под упрощением схемы будем понимать соединение или разъединение каких-либо узлов схемы, удаление или добавление резисторов, конденсаторов, добиваясь того, чтобы новая схема из последовательно и параллельно соединенных элементов была эквивалентна исходной.

Эквивалентная схема – это такая схема, что при подаче одинаковых напряжений на исходную и преобразованную схемы, ток в обеих цепях будет одинаков на соответствующих участках. В этом случае все расчеты производятся с преобразованной схемой.

Чтобы начертить эквивалентную схему для цепи со сложным смешанным соединением резисторов можно воспользоваться несколькими приемами. Мы ограничимся рассмотрением в подробностях лишь одного из них – способа эквипотенциальных узлов.

Читайте также:  Силовое реле напряжение управления

Этот способ заключается в том, что в симметричных схемах отыскиваются точки с равными потенциалами. Эти узлы соединяются между собой, причем, если между этими точками был включен какой-то участок схемы, то его отбрасывают, так как из-за равенства потенциалов на концах ток по нему не течет и этот участок никак не влияет на общее сопротивление схемы.

Таким образом, замена нескольких узлов равных потенциалов приводит к более простой эквивалентной схеме. Но иногда бывает целесообразнее обратная замена одного узла

несколькими узлами с равными потенциалами, что не нарушает электрических условий в остальной части.

Рассмотрим примеры решения задач эти методом.

Рассчитать сопротивление между точками А и В данного участка цепи. Все резисторы одинаковы и их сопротивления равны r.

В силу симметричности ветвей цепи точки С И Д являются эквипотенциальными. Поэтому резистор между ними мы можем исключить. Эквипотенциальные точки С и Д соединяем в один узел. Получаем очень простую эквивалентную схему:

Сопротивление которой равно:

В точках F и F` потенциалы равны, значит сопротивление между ними можно отбросить. Эквивалентная схема выглядит так:

Сопротивления участков DNB;F`C`D`; D`, N`, B`; FCD равны между собой и равны R1:

С учетом этого получается новая эквивалентная схема:

Ее сопротивление и сопротивление исходной цепи RАВ равно:

Точки С и Д имеют равные потенциалы. Исключением сопротивление между ними. Получаем эквивалентную схему:

Искомое сопротивление RАВ равно:

Как видно из схемы узлы 1,2,3 имеют равные потенциалы. Соединим их в узел 1. Узлы 4,5,6 имеют тоже равные потенциалы- соединим их в узел 2. Получим такую эквивалентную схему:

Сопротивление на участке А-1, R 1-равно сопротивлению на участке 2-В,R3 и равно:

Сопротивление на участке 1-2 равно: R2=r/6.

Теперь получается эквивалентная схема:

Общее сопротивление RАВ равно:

RАВ= R1+ R2+ R3=(5/6)*r.

Точки C и F-эквивалентные. Соединим их в один узел. Тогда эквивалентная схема будет иметь следующий вид:

Сопротивление на участке АС:

Сопротивление на участке FN:

Сопротивление на участке DB:

Получается эквивалентная схема:

Искомое общее сопротивление равно:

Заменим общий узел О тремя узлами с равными потенциалами О, О1 , О2. Получим эквивалентную систему:

Сопротивление на участке ABCD:

Сопротивление на участке A`B`C`D`:

Сопротивление на участке ACВ

Получаем эквивалентную схему:

Искомое общее сопротивление цепи RAB равно:

“Разделим” узел О на два эквипотенциальных угла О1 и О2. Теперь схему можно представить, как параллельные соединение двух одинаковых цепей. Поэтому достаточно подробно рассмотреть одну из них:

Сопротивление этой схемы R1 равно:

Тогда сопротивление всей цепи будет равно:

Узлы 1 и 2 – эквипотенциальные, поэтому соединим их в один узел I. Узлы 3 и 4 также эквипотенциальные – соединимих в другой узел II. Эквивалентная схема имеет вид:

Сопротивление на участке A- I равно сопротивлению на участке B- II и равно:

Сопротивление участка I-5-6- II равно:

Cопротивление участка I- II равно:

Получаем окончательную эквивалентную схему:

Искомое общее сопротивление цепи RAB=(7/12)*r.

В ветви ОС заменим сопротивление на два параллельно соединенных сопротивления по 2r. Теперь узел С можно разделить на 2 эквипотенциальных узла С1 и С2. Эквивалентная схема в этом случае выглядит так:

Сопротивление на участках ОСIB и DCIIB одинаковы и равны, как легко подсчитать 2r. Опять чертим соответствующую эквивалентную схему:

Сопротивление на участке AOB равно сопротивлению на участке ADB и равно (7/4)*r. Таким образом получаем окончательную эквивалентную схему из трех параллельно соединенных сопротивлений:

Ее общее сопротивление равно RAB= (7/15)*r

З а д а ч а № 10

Точки СОD имеют равные потенциалы – соединим их в один узел О I .Эквивалентная схема изображена на рисунке :

Сопротивление на участке А О I равно . На участке О I В сопротивление равно .Получаем совсем простую эквивалентную схему:

ЕЕ сопротивление равно искомому общему сопротивлению

Задачи № 11 и № 12 решаются несколько иным способом, чем предыдущие. В задаче №11 для ее решения используется особое свойство бесконечных цепей, а в задаче № 12 применяется способ упрощения цепи.

Выделим в этой цепи бесконечно повторяющееся звено, оно состоит в данном случае из трех первых сопротивлений. Если мы отбросим это звено, то полное сопротивление бесконечной цепи R не измениться от этого , так как получится точно такая же бесконечная цепь. Так же ничего не измениться, если мы выделенное звено подключим обратно к бесконечному сопротивлению R, но при этом следует обратить внимание , что часть звена и бесконечная цепь сопротивлением R соединены параллельно. Таким образом получаем эквивалентную схему :

Решая систему этих уравнений, получаем:

Читайте также:  Как правильно установить стабилизатор напряжения для дома

§3. Обучение решению задач по расчету электрических цепей способом эквипотенциальных узлов

Задача – это проблема, для разрешения которой ученику потребуются логические рассуждения и выводы. Строящиеся на основе законов и методов физики. Таким образом, с помощью задач происходит активизация целенаправленного мышления учащихся.

В то же время. Теоретические знания можно считать усвоенными только тогда, когда они удачно применяются на практике. Задачи по физике описывают часто встречающиеся в жизни и на производстве проблемы, которые могут быть решены с помощью законов физики и, если ученик успешно решает задачи, то можно сказать, что он хорошо знает физику.

Для того, чтобы ученики успешно решали задачи, недостаточно иметь набор методов и способов решения задач, необходимо еще специально учить школьников применению этих способов.

Рассмотрим план решения задач по расчету электрических цепей постоянного тока методом эквипотенциальных узлов.

  1. Чтение условия.
  2. Краткая запись условия.
  3. Перевод в единицы СИ.
  4. Анализ схемы:
    1. установить, является ли схема симметричной;
    2. установить точки равного потенциала;
    3. выбрать, что целесообразнее сделать – соединить точки равных потенциалов или же, наоборот, разделить одну точку на несколько точек равных потенциалов;
    4. начертить эквивалентную схему;
    5. найти участки только с последовательным или только с параллельным соединением и рассчитать общее сопротивление на каждом участке по законам последовательного и параллельного соединения;
    6. начертить эквивалентную схему, заменяя участки соответствующими им расчетными сопротивлениями;
    7. пункты 5 и 6 повторять до тех пор, пока не останется одно сопротивление, величина которого и будет решением задачи.
  5. Анализ реальности ответа.

Подробнее об анализе схемы

а) установить, является ли схема симметричной.

Определение. Схема симметрична, если одна ее половина является зеркальным отражением другой. Причем симметрия должна быть не только геометрической, но должны быть симметричны и численные значения сопротивлений или конденсаторов.

Схема симметричная, так как ветви АСВ и АДВ симметричны геометрически и отношение сопротивления на одном участке АС:АД=1:1 такое же, как и на другом участке СД:ДВ=1:1.

Схема симметричная, так как отношение сопротивлений на участке АС:АД=1:1 такое же, как и на другом участке СВ:ДВ=3:3=1:1

Схема не симметрична, так как отношения сопротивлений численно

не симметричны -1:2 и 1:1.

б) установить точки равных потенциалов.

Из соображений симметрии делаем вывод, что в симметричных точках потенциалы равны. В данном случае симметричными точками являются точки С и Д. Таким образом, точки С и Д – эквипотенциальные точки.

в) выбрать, что целесообразно сделать – соединить точки равных потенциалов или же, наоборот, разделить одну точку на несколько точек равных потенциалов.

Мы видим в этом примере, что между точками равных потенциалов С и Д включено сопротивление, по которому ток не будет течь. Следовательно, мы можем отбросить это сопротивление, а точки С и Д соединить в один узел.

г) начертить эквивалентную схему.

Чертим эквивалентную схему. При этом получаем схему с соединенными в одну точку точками С и Д.

д) найти участки только с последовательным или только с параллельным соединением и рассчитать общее сопротивление на каждом таком участке по законам последовательного и параллельного соединения.

Из полученной эквивалентной схемы видно, что на участке АС мы имеем два параллельно соединенных резистора. Их общее сопротивление находится по закону параллельного соединения:

Таким образом 1/RAC=1/r+1/r=2/r,откуда RAC= r/2.

На участке СВ картина аналогичная:

1/RCB= 1/r+1/r =2/r, откуда RCB=r/2.

е)начертить эквивалентную схему, заменяя участки соответствующими им расчетными сопротивлениями.

Чертим эквивалентную схему подставляя в нее рассчитанные сопротивления участков RAC и RCB:

ж)пункты д) и е) повторять до тех пор, пока останется одно сопротивление, величина которого и будет решением задачи.

Повторяем пункт д): на участке АВ имеем два последовательно соединенных сопротивления. Их общее сопротивление находим по закону последовательного соединения:

Rобщ= R1+R2+R3+… то есть, RAB=RAC+RCB = r/2+r/2 =2r/2 = r.

Повторяем пункт е): чертим эквивалентную схему:

Мы получили схему с одним сопротивлением, величина которого равна сопротивлению исходной схемы. Таким образом, мы получили ответ RAB = r.

Далее, для проверки усвоения данного материала можно учащимся предложить задания для самостоятельной работы, взятые из дидактического материала. (см. приложение)

  • Балаш. В.А. задачи по физике и методы их решения. — М: Просвещение,1983.
  • Лукашик В.И. Физическая олимпиада.- М: Просвещение, 2007
  • Усова А.В., Бобров А.А. Формирование учебных умений и навыков учащихся на уроках физики.- М: Просвещение,1988
  • Хацет А. Методы расчета эквивалентных схем //Квант.
  • Чертов А. Г. Задачник по физике. – М.: Высшая школа,1983
  • Зиятдинов Ш.Г., Соловьянюк С.Г. (методические рекомендации) г. Бирск,1994г
  • Марон А.Е., Марон Е.А. Физика. Дидактические материалы. Москва, “Дрофа”, 2004г
  • Источник

    Adblock
    detector