Меню

Схема регулятора температуры для электроплиты

Регулятор нагрева электроплиты

Регулятор нагрева электроплитыЗдесь мы рассмотрим принципиальную электрическую схему самодельного, тиристорного регулятора мощности электроплитки.

Добрый день, друзья. Разрешите представить Вашему вниманию регулятор нагрева бытовой электроплиты. В будущем планирую собрать ещё два регулятора по этой схеме: один для аэрогриля, второй — для электродуховки. В принципе, к нему можно подключить практически любую активную нагрузку, мощность которой ограничена параметрами регулирующего элемента — тиристоров КУ202Н. С указанными на схеме элементами она небольшая — несколько сотен ватт.

Регулятор нагрева электоплиты - схема электрическая

Работа схемы регулятора

Работает схема следующим образом. Переменное наряжение пройдя через гасящий резистор R4 выпрямляется диодным мостом VDS1, далее стабилизируется параметрическим стабилизатором на стабилитронах VD1 и VD2. За счёт такой схемы, напряжение, действующее на диодном мосте, будет всего лишь на пару вольт выше напряжения стабилизации стабилитронов, в связи с этим можно применить диодный мост на низкое напряжение. Для меня это очень даже хорошо, т.к. кц405Е есть куча и особо некуда их было применить.

Далее на элементах VT1,R2,R3,C1 выполнен генератор импульсов пилообразной формы, частота его увеличивается при уменьшении сопротивления R3. Затем идёт трансформатор связи (сигнальный трансформатор) Tr1, резистор R1 ограничивает ток (чтобы не спалить транзистор). ЭДС, наведённая на вторичных обмотках сигнального трансформатора прикладывается к управляющим электродам тиристоров в положительной полярности относительно катодов и открывает их после того, как синусоида перейдёт через ноль. Именно генератор пилообразных импульсов обеспечивает задержку открытия тиристоров.

После того, как тиристор откроется, он удерживается в открытом состоянии за счёт тока протекающего через него до следующего перехода через ноль (то есть во время перехода через ноль ток через тиристор не протекает и он закрывается).

Трасформатор на феритовом кольце из компьютерного блока питания АТ

Трасформатор связи я намотал на феритовом кольце из компьютерного блока питания АТ на 200вт — на нём был намотан сетевой фильтр, в качестве провода для намотки применил жилы от телефонного кабеля в полиэтиленовой изоляции. Мотал его до заполнения окна, косичкой из трёх проводов (чтобы были обмотки симметричны) — получилось 36 витков.

Мотал трансформатор до заполнения окна, косичкой из трёх проводов

Настройка тиристорного регулятора нагрева плиты

Настройку тиристорного регулятора мощности надо начинать на низком напряжении, собрав конструкцию, как на фотографии. Нужно убедится в правильной фазировке сигнального трансформатора или по осциллографу (на УЭ таристоров относительно их катодов должен быть импульс положительной полярности), или субъективно — по изменению яркости лампочки.

Регулятор нагрева электроплиты - настройка

Далее замыкаем R3 и если генератор остановился, увеличиваем сопротивление R2, если нет — то идём далее. Смотрим, в каких пределах регулируется срез фронта синусоиды, если не достаточно, то применяем переменный резистор R3 большего номинала. У меня мощность в нагрузке регулируется в пределах 55. 98 процентов от номинальной мощности нагревателя, чего собственно и добивался.

Источник



Регулятор мощности для электроплитки

Предположим, у вас есть электроплитка, а мощность ее не регулируется. Вот и горит спираль в полный накал тогда, когда достаточно и четверти номинальной мощности, бессмысленно расходуя драгоценные киловатт-часы. Выход есть — сделать к электроплитке регулятор мощности. Схема первого варианта регулятора представлена на рисунке. Он позволяет регулировать мощность в нагрузке, рассчитанной на включение в сеть напряжением 220 В, от 5. 10 до 97. 99% номинальной мощности. Коэффициент полезного действия регулятора не менее 98%.

Регулирующие элементы устройства — тринисторы VS1 и VS2 -включены последовательно с нагрузкой. Изменение мощности, потребляемой нагрузкой, достигается изменением угла открывания тринисторов.

Узел, обеспечивающий изменение угла открывания тринисторов, выполнен на однопереходном транзисторе VT1. Конденсатор С1, соединенный с эмиттером транзистора, заряжается через резисторы R2 и R3. Как только напряжение на обкладках конденсатора достигнет определенного значения, однопереходный транзистор откроется, через обмотку I трансформатора Т1 пройдет короткий импульс тока. Импульсы с обмотки II или III трансформатора откроют тринистор VS1 или VS2 — в зависимости от фазы сетевого напряжения, и с этого момента до конца полупериода через нагрузку будет протекать ток. Изменяя сопротивление резистора R3, можно регулировать скорость зарядки конденсатора С1 и, следовательно, угол открывания тринисторов и среднюю мощность в нагрузке.

Узел регулирования угла открывания тринисторов питается от двухполупериодного выпрямителя, выполненного по мостовой схеме (VD1). Напряжение на однопереходном транзисторе ограничено стабилитронами VD2, VD3. Конденсатор фильтра здесь отсутствует — в нем нет необходимости.

Однопереходный транзистор КТ117 можно применять с буквами А и Б. Можно использовать также аналог однопереходного транзистора, выполненный на двух биполярных транзисторах разной структуры (см. рис. 50). Мостовой выпрямитель VD1 может быть типов КЦ402, КЦ405 с любыми буквами. Можно также применить четыре диода типов Д226, Д310, Д311, Д7 с любыми буквами, включив их по схеме выпрямительного моста. При замене тринисторов VS1, VS2 на другие типы следует помнить, что они должны быть рассчитаны на подачу как прямого, так и обратного напряжения не менее 400 В. Трансформатор Т1 — типа МИТ-4 или МИТ-10. Самодельный трансформатор можно выполнить на ферритовом кольцевом магнитопроводе М2000НМ, типоразмер К20х10хб. Все обмотки выполнены проводом ПЭВ-1 0,31 и содержат по 40 витков. Намотка ведется одновременно в три провода, причем витки равномерно распределяются по телу кольца магнитопровода. Одноименные выводы обмоток на схеме обозначены точками.

Читайте также:  Регулятор оборотов печки лансер 9

Тринисторы VS1 и VS2 устанавливают на радиаторы с поверхностью охлаждения не менее 200 см^2 каждый. При этом максимальная мощность нагрузки может составлять 2 кВт.

Настройка регулятора мощности заключается в подборе сопротивления резистора R2 по максимальной мощности в нагрузке. Резистор R3 при этом временно замыкают проволочной перемычкой. Момент отдачи в нагрузку максимальной мощности лучше всего контролировать по осциллографу. В случае применения самодельного трансформатора Т1 следует подобрать нужную полярность подключения выводов обмоток, которая должна соответствовать обозначенной на схеме.

Регулятор мощности можно использовать также совместно с маломощными электропечами, лампами накаливания и другими активными нагрузками. Описанному тринисторному регулятору мощности присущи недостатки. Во-первых, с изменением температуры в корпусе регулятора (а она будет в процессе работы увеличиваться из-за нагрева тиристоров) будет изменяться емкость конденсатора С1. Это приведет к изменению угла открывания тринисторов, а также к изменению мощности в нагрузке. Чтобы в какой-то степени устранить этот недостаток, необходимо применять конденсатор С1 с небольшими значениями ТКЕ (температурного коэффициента емкости), например К73-17, К73-24.

Во-вторых, тринисторный стабилизатор наводит высокий уровень помех в питающей сети. Эти помехи возникают в моменты скачкообразного включения тринистора. Коммутационные помехи не только распространяются через сеть, вызывая неустойчивую работу различных приборов (электронных часов, вычислительных машин и пр.), но и мешают нормальной работе некоторых устройств, гальванически не связанных с сетью (так, в радиоприемнике, находящемся недалеко от тринисторных регуляторов, слышен треск помех). Поэтому уменьшение коммутационных помех в тринисторных регуляторах мощности является важной задачей.:

Наиболее доступным способом снижения помех является такой способ регулирования, при котором переключение тринистора происходит в моменты перехода сетевого напряжения через нуль. При этом мощность в нагрузке можно регулировать числом полных полупериодов, в течение которых через нагрузку протекает ток. Недостатком такого способа регулирования по сравнению с традиционными являются большие колебания мгновенных значений мощности в нагрузке в течение периода регулирования, который значительно больше периода синусоидального напряжения и может достигать нескольких секунд. Однако для таких инерционных потребителей энергии, как электрическая печь, утюг, электроплитка, мощный электромотор, этот недостаток не является определяющим.

Источник

Контроллер управления кухонной электроплитой. Регулятор мощности и таймер отключения

Технические характеристики контроллера электроплиты

• Симисторный регулятор позволяет регулировать мощность в активной нагрузке от нуля до 100% с шагом 1%. Величина регулируемой мощности определяется типом тиристора и свойствами радиатора охлаждения.
• Для быстрого разогрева предусмотрена подача 100% мощности на заданное время, от нуля до 9 мин
• Предусмотрен таймер обратного отсчета времени нагрева, от нуля до 999 мин.
• Возможен выбор способа регулирования пропуском периодов или управлением длительностью полупериода (фазовый метод). Позволяет менять способы регулирования во время работы.
• Запоминание всех установок при плановом или случайном отключении устройства от сети.
• Габариты устройства 125×70 х 62 мм.

Краткое описание режимов регулирования

Пропуск периодов

Пропуск периодов позволяет решить проблему электромагнитной совместимости, так как включение симистора происходит в момент перехода сетевого напряжения через нуль.

Известно, что отдаваемую мощность прибора работающего на переменном напряжении можно регулировать, пропуская в неё не все периоды напряжения сети. Если взять сеть частотой 50Гц, то в 2с проходит 100 периодов, значит если в 2 с пропустить, допустим, 10 периодов, то получим 10% мощности, и точность регулирования составит 1%. При этом очень желательно чтобы периоды шли не пачками, а были бы распределены равномерно.
Это достигается использованием алгоритма Брезенхема, который распределяет заданный процент мощности равномерно во времени. Причем это достигается применением в программе только целочисленной арифметики, без деления и умножения, что существенно упрощает и ускоряет вычисления. Вычисления и управление по алгоритму Брезенхема запускаются сразу после поступления внешнего прерывания.
Режим пропуска периодов применим для управления резистивными нагрузками, но не применим для осветительных приборов, так как вызывает мигание ламп накаливания.

Читайте также:  Реле регулятор додж калибр

Фазовое регулирование

Альтернативным методом управления мощностью является метод фазового управления
Для изменения мощности, подведенной к нагрузке через симистор, может использоваться фазовое управление. Сущность метода заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Это и будет так называемая широтно-импульсная модуляция, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД.

Преимуществом этого метода является то, что частота пульсаций на нагрузке остается равной сетевой. Это важно для управления осветительными приборами, так как снижение частоты может сказаться на появлении мерцания, заметного глазом. Но при регулировании данным методом появляется особенность неравномерности характеристики регулирования.

Прямое решение этого уравнения требует поиска корней квадратного уравнения и вычисление арккосинуса полученного корня. Это довольно сложная задача для микроконтроллера, как по времени, так и по объему ресурсов. Поэтому значительно более простым оказалось применение метода кусочно-линейной аппроксимации, без значительной потери точности, что наглядно видно из графика.

По оси x указано значение устанавливаемой мощности в процентах, а по оси y значение угла открывания симистора в значениях Π/100. Синий график – вычисленный по формулам, а коричневый создан с помощью аппроксимации. Как видно из рисунка расхождения между реальными и вычисленными значениями весьма незначительны.
Неприятной особенностью фазового метода являются помехи, которые могут появиться в связи с резким переключением симистора, поэтому желательно применение фильтров на входе.

Для обоих методов управления мощностью необходимо знать, когда сетевое напряжение переходит через нуль и поэтому основной цикл программы — отслеживание перехода сетевого напряжения через ноль и подача его на вход внешнего прерывания микроконтроллера, как на вход с наивысшим приоритетом.

Схема и описание силовой части регулятора мощности

Силовой блок выдает напряжение +5V, формирует импульсы перехода сети через ноль и содержит схему управления нагрузкой с помощью симистора.
Детектор перехода сетевого напряжения через ноль взят из журнала «Радиолоцман». Он выдает импульсы перехода с интервалом 10 мсек.
Конденсатор С6 заряжается до 25 Вольт — уровня ограничения стабилитрона D12. Входной ток ограничивается резистором R2. Когда выпрямленное входное напряжение опускается ниже напряжения на конденсаторе С6, открывается транзистор Q3 и генерирует импульс длительностью в несколько сотен микросекунд. Оптрон U2 обостряет фронты и делает выходной импульс более прямоугольным.

Схема источника +5 Вольт подробно описана в журнале «Радио» № 11 за 2007 год, стр. 30, в статье «Доработка ЗУ сотового телефона». Добавлен стабилизатор на 78L05 для уменьшения помех и для дополнительной стабилизации.
Работа схемы: Напряжение сети через резистор R1, который выполняет функции предохранителя, поступает на мостовой выпрямитель на диодах D1 —D4 и сглаживается конденсатором С1. Стабилизация выходного напряжения осуществляется косвенным методом. Для этого напряжение со второй обмотки трансформатора выпрямляется диодом D5, сглаживается конденсатором С2 и через стабилитрон D6 поступает на базу транзистора. Для защиты источника в момент подключения к сети, а также при резких колебаниях напряжения в сети, установлена защита по току Q2 на элементах Q1, R7 на уровне 60…70 мА.

Подключение симистора выполнено по схеме из даташита на оптосимистор MOC3052.
Когда силовой блок проектировался, предполагалось, его применение только в режиме с пропуском периодов, поэтому в схеме отсутствуют фильтры для защиты от помех. Для работы в режиме фазового регулирования их желательно добавить, хотя бы простейший LC фильтр перед симистором.

Схема управляющей части регулятора мощности

NB! На принципиальной схеме неверно указаны номиналы резисторов R2 — R6. Правильный номинал 680 Ом.
Применен индикатор с общим катодом.
Схема блока управления получилась довольно простой. Три кнопки управления, 3-х разрядный индикатор и два светодиода позволяют управлять и следить за всеми функциями устройства.
Платы блоков соединяются 4-х проводным шлейфом.

Программное обеспечение

Программа написана на языке Си для компилятора «mikroC for PIC». Комментарии, расположенные в программе способствуют пониманию ее работы.
• Для управления режимами работы применено управление с помощью одной кнопки с подсчетом числа нажатий. Алгоритм и часть кода взяты из статьи «Интерфейс — одна кнопка».
Кнопку можно нажимать кратко (несколько раз), длинно или делать разные комбинации нажатий. Сколько за две секунды успеем «натыкать» — всё наше. Далее запустится процедура анализа собранных данных и всё расставит по порядку.
Бороться с дребезгом тут уже не обязательно, так как временные задержки организуются автоматически. См. подробности в статье.

Читайте также:  Реле регулятор китайский мото

• В программе задействованы прерывания по внешнему входу INT, по таймеру 1 и таймеру 2.
На вход INT поступают импульсы с детектора перехода через ноль с периодом 10 мсек. Импульсы с таким периодом используются для получения фазовой регулировки, а для управления пропуском периодов необходим период 20 мсек, который получаем программно, пропуская один из импульсов. Алгоритм Брезенхема удачно вписался в программу внешних прерываний.
С таймера TMR1 получаем импульсы 5 мсек, которые используются для динамической индикации, работы кнопки «Выбор» и отсчета системного времени.
Таймер TMR0 настроен на время около 100 мксек и применяется только в режиме фазового управления.

• Память EEPROM использована для сохранения всех режимов при отключении или внезапном пропадания питания. Запись в память происходит после пропадания импульсов внешнего прерывания. Восстановление данных из памяти происходит при включении регулятора в сеть. При таком использовании EEPROM резко уменьшается количество операций записи и время, которое она занимает.

Сборка и устройство прибора

Прибор собран на двух платах, соединенных между собой стойками.

Радиатор для симистора должен иметь достаточную площадь для отвода тепла.

Трансформатор и некоторые детали для источника питания +5 Вольт применены от старого телефонного зарядника. Оптосимистор U1 можно заменить аналогом, но следует учесть, что он должен быть без детектора нуля. Платы соединены между собой 4-х проводным шлейфом. Печатная плата для блока управления не создавалась, а была взята от предыдущей версии. С нее были удалены лишние детали и сделаны необходимые доработки. Обе платы и розетка для включения нагрузки заключены в корпус из металла и пластика.

Первое включение и проверка работы

Учитывая, что силовая часть устройства гальванически связана с сетью, желательно проявить максимум осторожности или использовать разделительный трансформатор при первом включении и проверке сигналов.
1. Включить силовую часть устройства.
2. Проверить напряжение источника +5 Вольт на выходе микросхемы 78L05.
3. Проверить наличие импульсов перехода через ноль – должны быть импульсы с периодом 10 мсек.
4. Соединить плату шлейфом, подключить в качестве нагрузки лампу накаливания 15 – 100вт и включить в сеть. При включении лампа загорится полным накалом и также загорится красный светодиод. После некоторого времени красный светодиод гаснет, и лампа начинает мигать в зависимости от установленной мощности. Если перейти в фазовый режим, то лампа будет гореть без миганий, а яркость будет изменяться в зависимости от установленной мощности. Желтый светодиод ШИМ практически полностью повторяет режим свечения лампы.
5. Проверить регулятор во всех режимах работы, согласно инструкции по управлению устройством.

Управление прибором

• Режим управления мощностью – одно короткое нажатие кнопки «Выбор». На индикаторе отображается величина мощности в процентах.
• Режим таймера отключения — два коротких нажатия кнопки «Выбор». На индикаторе отображается время, оставшееся до отключения нагрева в минутах. В этом режиме идет обратный отсчет времени в минутах. Можно установить время отключения таймера в минутах от 0 до 999. точка в последнем разряде мигает, если идет отсчет.
• Режим установки времени быстрого разогрева — три коротких нажатия кнопки «Выбор». На индикаторе отображается время, подачи 100% мощности нагрева в минутах и секундах. При этом точка в первом разряде не мигает.
• Режим изменения варианта регулировки с пропуском периода или фазовый – одно длинное нажатие кнопки. На индикаторе отображается режим PUL — с пропуском периода или F – фазовый.

В любом из режимов можно изменить значения кнопками «+» и «-». Нажатие кнопки кратковременно — добавление или уменьшение, удержание быстрый перебор. При этом кнопкой «Выбор» можно перейти в любой режим и просмотреть параметры любого режима, если не нажимать кнопки «+» и «-».

Если возникнет необходимость вернуться к начальным установкам, это можно сделать, удерживая кнопку «Выбор» около секунды при включении устройства в сеть.

Файлы

Ссылки на источники

Спасибо за внимание!
Иван Внуковский,
г. Днепропетровск

Источник

Adblock
detector