Меню

Схема регулятора скорости для моделей

Регулятор оборотов коллекторного микроэлектродвигателя для РУ модели

Желание собрать радиоуправление у меня созрело достаточно давно. Но дальше поиска схем, с последующим пониманием, что прошивку автор не даст, дело не продвинулось. В итоге, затея была похоронена в стадии развития. Но недавно мне на глаза попались модули, именуемые NRF24L01+ (стоит 0.6$ на Ali), и уже позабытое желание собрать радиоуправление загорелось с новой силой.

В конечном счете, была разработана схема радиоуправления, а так же несколько сопутствующих устройств. Об одном из них и пойдет речь в данной статье. К слову, в следующих статьях будет описано само радиоуправление, а так же зарядное устройство для li-ion аккумуляторов.

Регулятор оборотов двигателя — это название слышал любой моделист, а в особенности те, кто собирал авиа- и судомодели. Это устройство незаменимо, так как оно обеспечивает плавное управление скорость двигателя.

Существует множество вариантов исполнения таких регуляторов: на микроконтроллерах, на жесткой логике и даже на дискретных компонентах. После просмотра уже готовых схем, я понял что придется делать что-то свое — на логике собирать не хотелось, на дискретных компонентах выходило уж очень громоздко. Найденные схемы на микроконтроллерах были в общем-то неплохими, да вот только вариант собирать то, принцип действия чего я не смогу объяснить, меня не привлекал (а прошивку авторы выкладывать не спешили).

После всего этого и была разработана и собрана схема.

Схема устройства

Итак, краткие характеристики (при номиналах деталей, указанных на схеме):

  • Диапазон питающих напряжений: 7 . 35В
  • Максимальный ток: 3А
  • Длительность управляющего импульса: 1 . 2мс
  • Рекомендованный период импульсов: 20мс

Силовая часть представляет собой Н-мост с дополнительными маломощными управляющими транзисторами. Управление оборотами двигателя производится ШИМ сигналом, генерируемым МК. Скважность ШИМ зависит от длительности импульса, поступающего на вход устройства.

Обработку сигналов и управление транзисторами в этой схеме выполняет микроконтроллер ATtiny2313. Этот выбор ничем не обусловлен, кроме того, что он у меня валялся под рукой на момент проектировки устройства. Изначально, в схеме планировалось использование полевых транзисторов, но позже я от них отказался в пользу более доступных советских биполярников (которых практически у каждого целый ящик). Конечно, это наложило свой отпечаток на параметры: максимальный ток значительно снизился, как и цена девайса.

Как уже упоминалось, напряжение питания устройства может варьироваться от 6 до 30 вольт. Это обусловлено границами напряжения, которое может выдержать интегральный стабилизатор LM7805, а так же двигатель (на него подается напряжение, отличное от питающего примерно на 1 вольт).

Максимальный ток зависит от применяемых транзисторов. В моем варианте — это КТ816/817, максимальный ток коллектора которых равен трем амперам.

В качестве маломощных управляющих транзисторов использованы распространенные КТ315.

Для более точного измерения длительности управляющего (серво) импульса был применен кварцевый резонатор на частоту 8МГц.

Диоды D1 — D4 желательно монтировать. Будет работать и без них, но вопрос в том, как долго.

Печатная плата устройства выполнена на одностороннем фольгированном материале (стеклотекстолит, гетинакс). Дорожки выделенные красным — перемычки с лицевой стороны. В моем варианте транзисторы монтируются вне платы на радиаторе.

Печатная плата устройства (синие проводники — обратная сторона):

Печатная плата

Принцип работы

При получении импульса, запускается 16 битный таймер, который останавливается по спаду импульса. Таймер настроен таким образом, что каждый его такт — это 1мкс, что позволяет упростить вычисления. После определения длительности импульса происходит сравнение с заданной величиной. Результат записывается в регистр OCR1A/B в зависимости от положения джампера и длительности импульса.

Исходный код приведен ниже. Так же его можно взять в приложении к статье.

В наладке устройство не нуждается, и должно работать сразу после правильной сборки и прошивки микроконтроллера. С последним будьте осторожны — не отключите ненароком бит RSTDISBL. Это может стоить вам нового микроконтроллера (если у вас конечно нет параллельного программатора).

Транзисторы КТ315 можно заменить любыми маломощными кремниевыми транзисторами структуры n-p-n. КТ816/817 — аналогичными по параметрам (или более мощными). К примеру, КТ818/819 и т.д. Резисторы можно заменить на аналогичные по мощности с допуском 20-30% от номинального сопротивления. Линейный стабилизатор LM7805 можно заменить на отечественный аналог КРЕН5А, а так же применить импульсный стабилизатор, но придется переработать печатную плату.

Фото , а так же видео работы устройства можно увидеть ниже.

Фото 1Фото 2

Фото 3

Извиняюсь за не очень презентабельный вид платы — изначально это был тестовый вариант «на первое время». Но так как устройство с первого раза заработало так как от него требовалось, то «временный вариант» перерос в постоянный.

Источник



Схема регулятора скорости бесколлекторного двигателя (ESC)

Схема условно разделена на две части: левая — микроконтроллер с логикой, правая — силовая часть. Силовую часть можно модифицировать для работы с двигателями другой мощности или с другим питающим напряжением.

Контроллер — ATMEGA168. Гурманы могут сказать, что хватило бы и ATMEGA88, а AT90PWM3 — это было бы «вааще по феншую». Первый регулятор я как раз делал «по феншую». Если у Вас есть возможность применять AT90PWM3 — это будет наиболее подходящий выбор. Но для моих задумок решительно не хватало 8 килобайт памяти. Поэтому я применил микроконтроллер ATMEGA168.

Эта схема задумывалась как испытательный стенд. На котором предполагалось создать универсальный настраиваемый регулятор для работы с различными «калибрами» бесколлекторных двигателей: как с датчиками, так и без датчиков положения. В этой статье я опишу схему и принцип работы прошивки регулятора для управления бесколлекторными двигателями с датчиками Холла и без датчиков.

Схема регулятора

Brushless ESC

Питание

ШИМ и сигналы для ключей

Обратная связь (контроль напряжения фаз двигателя)

Датчики Холла

Измерения аналоговых сигналов

На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA. Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.

Если Вам хочется использовать шунт с последующей схемой усиления, согласования — пожалуйста.

Задающие сигналы

Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.

UART интерфейс

Прочее

Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4.

Силовая часть

Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540, в реальности использовались K3069. K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).

Читайте также:  Регулятор для двух аккумуляторов

Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость — тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD — может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем «» батареи, затем подаем «+» на контакт Antispark. Ток течет через резистор и плавно заряжает конденсатор С19. Через несколько секунд, подключаем контакт батареи к VD. При питании 12В можно Antispark не делать.

Возможности прошивки

  • возможность управлять двигателями с датчиками и без;
  • для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
  • настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
  • возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
  • калибровка входных сигналов;
  • реверс двигателя;
  • настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
  • частота ШИМ 16, 32 КГц.
  • настройка уровня ШИМ сигнала для старта двигателя;
  • контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
  • контроль тока двигателя. Два порога: ограничение и отсечка;
  • настраиваемый демпфер задающего сигнала;
  • настройка Dead time для ключей

Работа регулятора

Включение

После включения двигатель издает 1 короткий сигнал (если звук не отключен), включается и постоянно светится светодиод. Регулятор готов к работе.

Для запуска двигателя следует увеличивать величину задающего сигнала. В случае использования задающего потенциометра, запуск двигателя начнется при достижении задающего напряжения уровня примерно 0.14 В. При необходимости можно выполнить калибровку входного сигнала, что позволяет использовать раные диапазоны управляющих напряжений. По умолчанию настроен демпфер задающего сигнала. При резком скачке задающего сигнала обороты двигателя будут расти плавно. Демпфер имеет несимметричную характеристику. Сброс оборотов происходит без задержки. При необходимости демпфер можно настроить или вовсе отключить.

Запуск

При опрокидывании двигателя или механическом заклинивании ротора срабатывает защита, и регулятор пытается перезапустить двигатель.

Запуск двигателя с датчиками Холла также выполняется с применением настроек для старта двигателя. Т.е. если для запуска двигателя с датчиками дать полный газ, то регулятор подаст напряжение, которое указано в настройках для старта. И только после того, как двигатель начнет вращаться, будет подано полное напряжение. Это несколько нестандартно для двигателя с датчиками, поскольку такие двигатели в основном применяются как тяговые, а в данном случае достичь максимального крутящего момента на старте, возможно, будет сложно. Тем не менее, в данном регуляторе присутствует такая особенность, которая защищает двигатель и регулятор от выхода со строя при механическом заклинивании двигателя.

Во время работы регулятор выдает данные об оборотах двигателя, токе, напряжении батарей через порт UART в формате:

Данные выдаются с периодичностью примерно 1 секунда. Скорость передачи по порту 9600.

Настройка регулятора

Переход регулятора в режим настройки происходит при включении регулятора, когда задающий сигнал потенциометра больше нуля. Т.е. Для перевода регулятора в режим настройки следует повернуть ручку задающего потенциометра, после чего включить регулятор. В терминале появится приглашение в виде символа «>«. После чего можно вводить команды.

Регулятор воспринимает следующие команды (в разных версиях прошивки набор настроек и команд может отличаться):

h — вывод списка команд; ? — вывод настроек; c — калибровка задающего сигнала; d — сброс настроек к заводским настройкам.

команда «?» выводит в терминал список всех доступных настроек и их значение. Например: Изменить нужную настройку можно командой следующего формата:

pwm.start=15

Если команда была дана корректно, настройка будет применена и сохранена. Проверить текущие настройки после их изменения можно командой «?«.

Измерения аналоговых сигналов (напряжение, ток) выполняются с помощью АЦП микроконтроллера. АЦП работает в 8-ми битном режиме. Точность измерения занижена намеренно для обеспечения приемлемой скорости преобразования аналогового сигнала. Соответственно, все аналоговые величины регулятор выдает в виде 8-ми битного числа, т.е. от 0 до 255.

Список настроек, их описание:

Параметр Описание Значение
motor.type Тип мотора 0-Sensorless; 1-Sensored
motor.magnets Кол.во магнитов в роторе двигателя. Изпользуется только для расчета оборотов двигателя. 0..255, шт.
motor.angle Угол опережения фазы. Используется только для Sensorless двигателей. 0..30, градусов
motor.start.type Тип старта. Используется только для Sensorless двигателей. 0-без определения положения ротора; 1-с определением положения ротора; 2-комбинированный;
motor.start.time Время старта. 0..255, мс
pwm Частота PWM 16, 32, КГц
pwm.start Значение PWM (%) для старта двигателя. 0..50 %
pwm.min Значение минимального значения PWM (%), при котором двигатель вращается. 0..30 %
voltage.limit Напряжение батареи, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255*
voltage.cutoff Напряжение батареи, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255*
current.limit Ток, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255**
current.cutoff Ток, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255**
system.sound Включить/выключить звуковой сигнал, издаваемый двигателем 0-выключен; 1-включен;
system.input Задающий сигнал 0-потенциометр; 1-RC сигнал;
system.damper Демпфирование входного сигнала 0..255, условные единицы
system.deadtime Значение Dead Time для ключей в микросекундах 0..2, мкс

* — числовое значение 8-ми битного аналого цифрового преобразователя. Рассчитывается по формуле: ADC = (U*R6/(R5+R6))*255/5 Где: U — напряжение в Вольтах; R5, R6 — сопротивление резисторов делителя в Омах.

** — числовое значение 8-ми битного аналого цифрового преобразователя. Рассчитывается по формуле: ADC = U*255/5 Где: U — напряжение датчика тока в Вольтах, соответствующее требуемому току.

Фьюзы микроконтроллера должны быть выставлены на работу с внешним кварцем. Строка для программирования фьюзов с помощью AVRDUDE:

-U lfuse:w:0xFF:m -U hfuse:w:0xDC:m

Источник

Схема регулятора скорости бесколлекторного двигателя (ESC)

Схема условно разделена на две части: левая — микроконтроллер с логикой, правая — силовая часть. Силовую часть можно модифицировать для работы с двигателями другой мощности или с другим питающим напряжением.

Контроллер — ATMEGA168. Гурманы могут сказать, что хватило бы и ATMEGA88, а AT90PWM3 — это было бы «вааще по феншую». Первый регулятор я как раз делал «по феншую». Если у Вас есть возможность применять AT90PWM3 — это будет наиболее подходящий выбор. Но для моих задумок решительно не хватало 8 килобайт памяти. Поэтому я применил микроконтроллер ATMEGA168.

Читайте также:  Реле регулятор ява старушка

Эта схема задумывалась как испытательный стенд. На котором предполагалось создать универсальный настраиваемый регулятор для работы с различными «калибрами» бесколлекторных двигателей: как с датчиками, так и без датчиков положения. В этой статье я опишу схему и принцип работы прошивки регулятора для управления бесколлекторными двигателями с датчиками Холла и без датчиков.

Brushless ESC

Питание

Питание схемы раздельное. Поскольку драйверы ключей требуют питание от 10В до 20В, используется питание 12В. Питание микроконтроллера осуществляется через DC-DC преобразователь, собранный на микросхеме MC34063. Можете применять линейный стабилизатор с выходным напряжением 5В. Предполагается, что напряжение VD может быть от 12В и выше и ограничивается возможностями драйвера ключей и самими ключами.

ШИМ и сигналы для ключей

На выходе OC0B(PD5) микроконтроллера U1 генерируется ШИМ сигнал. Он поступает на переключатели JP2, JP3. Этими переключателями можно выбрать вариант подачи ШИМ на ключи (на верхние, нижние или на все ключи). На схеме переключатель JP2 установлен в положение для подачи ШИМ сигнала на верхние ключи. Переключатель JP3 на схеме установлен в положение для отключения подачи ШИМ сигнала на нижние ключи. Не трудно догадаться, что если отключить ШИМ на верхних и нижних ключах, мы получим на выходе перманентный «полный вперед», что может разорвать двигатель или регулятор в хлам. Поэтому, не забываем включать голову, переключая их. Если Вам не потребуется такие эксперименты — и Вы знаете, на какие ключи Вы будите подавать ШИМ, а на какие нет, просто не делайте переключателей. После переключателей ШИМ сигнал поступает на входы элементы логики «&» (U2, U3). На эту же логику поступают 6 сигналов с выводов микроконтроллера PB0..PB5, которые являются управляющими сигналами для 6 ключей. Таким образом, логические элементы (U2, U3) накладывают ШИМ сигнал на управляющие сигналы. Если Вы уверены, что будете подавать ШИМ, скажем, только на нижние ключи, тогда ненужные элементы (U2) можно исключить из схемы, а соответствующие сигналы с микроконтроллера подавать на драйверы ключей. Т.е. на драйверы верхних ключей сигналы пойдут напрямую с микроконтроллера, а на нижние — через логические элементы.

Обратная связь (контроль напряжения фаз двигателя)

Напряжение фаз двигателя W,V,U через резистивные делители W — (R17,R25), V — (R18, R24), U — (R19, R23) поступают на входа контроллера ADC0(PC0), ADC1(PC1), ADC2(PC2). Эти выводы используются как входы компараторов. (В примере описанном в AVR444.pdf от компании Atmel применяют не компараторы, а измерение напряжения с помощью ADC (АЦП). Я отказался от этого метода, поскольку время преобразования ADC не позволяло управлять скоростными двигателями). Резистивные делители выбираются таким образом, чтобы напряжение, подаваемое на вход микроконтроллера, не превышало допустимое. В данном случае, резисторами 10К и 5К делится на 3. Т.е. При питании двигателя 12В. на микроконтроллер будет подаваться 12В*5К/(10К+5К) = 4В. Опорное напряжение для компаратора (вход AIN1) подается от половинного напряжения питания двигателя через делитель (R5, R6, R7, R8). Обратите внимание, резисторы (R5, R6) по номиналу такие же, как и (R17,R25), (R18, R24),(R19, R23). Далее напряжение уменьшается вдвое делителем R7, R8, после чего поступает на ногу AIN1 внутреннего компаратора микроконтроллера. Переключатель JP1 позволяет переключить опорное напряжение на напряжение «средней точки» формируемое резисторами (R20, R21, R22). Это делалось для экспериментов и себя не оправдало. Если нет в необходимости, JP1, R20, R21, R22 можно исключить из схемы.

Датчики Холла

Поскольку регулятор универсальный, он должен принимать сигналы от датчиков Холла в том случае, если используется двигатель с датчиками. Предполагается, что датчики Холла дискретные, тип SS41. Допускается применение и других типов датчиков с дискретным выходом. Сигналы от трех датчиков поступают через резисторы R11, R12, R13 на переключатели JP4, JP5, JP6. Резисторы R16, R15, R14 выступают в качестве подтягивающих резисторов. C7, С8, С9 — фильтрующие конденсаторы. Переключателями JP4, JP5, JP6 выбирается тип обратной связи с двигателем. Кроме изменения положения переключателей в программных настройках регулятора следует указать соответствующий тип двигателя (Sensorless или Sensored).

Измерения аналоговых сигналов

На вход ADC5(PC5) через делитель R5, R6 подается напряжения питания двигателя. Это напряжение контролируется микроконтроллером.

На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA. Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.

Если Вам хочется использовать шунт с последующей схемой усиления, согласования — пожалуйста.

Задающие сигналы

Сигнал, задающий обороты двигателя, с потенциометра RV1 поступает на вход ADC4(PC4). Обратите внимание на резистор R9 — он шунтирует сигнал в случае обрыва провода к потенциометру.

Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.

UART интерфейс

Сигналы TX, RX используются для настройки регулятора и выдачи информации о состоянии регулятора — обороты двигателя, ток, напряжение питания и т.п. Для настройки регулятора его можно подключить к USB порту компьютера, используя FT232 переходник. Настройка выполняется через любую программу терминала. Например: Hyperterminal или Putty.

Прочее

Также имеются контакты реверса — вывод микроконтроллера PD3. Если замкнуть эти контакты перед стартом двигателя, двигатель будет вращаться в обратном направлении.

Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4.

Силовая часть

Драйвера ключей использовались IR2101. У этого драйвера одно преимущество — низкая цена. Для слаботочных систем подойдет, для мощных ключей IR2101 будет слабоват. Один драйвер управляет двумя «N» канальными MOSFET транзисторами (верхним и нижним). Нам понадобиться три таких микросхемы.

Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540, в реальности использовались K3069. K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).

Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость — тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD — может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем «» батареи, затем подаем «+» на контакт Antispark. Ток течет через резистор и плавно заряжает конденсатор С19. Через несколько секунд, подключаем контакт батареи к VD. При питании 12В можно Antispark не делать.

Читайте также:  Схема управления регулятором давления

Возможности прошивки

  • возможность управлять двигателями с датчиками и без;
  • для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
  • настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
  • возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
  • калибровка входных сигналов;
  • реверс двигателя;
  • настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
  • частота ШИМ 16, 32 КГц.
  • настройка уровня ШИМ сигнала для старта двигателя;
  • контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
  • контроль тока двигателя. Два порога: ограничение и отсечка;
  • настраиваемый демпфер задающего сигнала;
  • настройка Dead time для ключей

Работа регулятора

Включение

Напряжение питания регулятора и двигателя раздельное, поэтому может возникнуть вопрос: в какой последовательности подавать напряжение. Я рекомендую подавать напряжение на схему регулятора. А затем подключать напряжение питания двигателя. Хотя при другой последовательности проблем не возникало. Соответственно, при одновременной подаче напряжения также проблем не возникало.

После включения двигатель издает 1 короткий сигнал (если звук не отключен), включается и постоянно светится светодиод. Регулятор готов к работе.

Для запуска двигателя следует увеличивать величину задающего сигнала. В случае использования задающего потенциометра, запуск двигателя начнется при достижении задающего напряжения уровня примерно 0.14 В. При необходимости можно выполнить калибровку входного сигнала, что позволяет использовать раные диапазоны управляющих напряжений. По умолчанию настроен демпфер задающего сигнала. При резком скачке задающего сигнала обороты двигателя будут расти плавно. Демпфер имеет несимметричную характеристику. Сброс оборотов происходит без задержки. При необходимости демпфер можно настроить или вовсе отключить.

Запуск

Запуск бездатчикового двигателя выполняется с установленным в настройках уровнем стартового напряжения. В момент старта положение ручки газа роли значения не имеет. При неудачной попытке старта попытка запуска повторяется, пока двигатель не начнет нормально вращаться. Если двигатель не может запуститься в течение 2-3 секунд попытки следует прекратить, убрать газ и перейти к настройке регулятора.

При опрокидывании двигателя или механическом заклинивании ротора срабатывает защита, и регулятор пытается перезапустить двигатель.

Запуск двигателя с датчиками Холла также выполняется с применением настроек для старта двигателя. Т.е. если для запуска двигателя с датчиками дать полный газ, то регулятор подаст напряжение, которое указано в настройках для старта. И только после того, как двигатель начнет вращаться, будет подано полное напряжение. Это несколько нестандартно для двигателя с датчиками, поскольку такие двигатели в основном применяются как тяговые, а в данном случае достичь максимального крутящего момента на старте, возможно, будет сложно. Тем не менее, в данном регуляторе присутствует такая особенность, которая защищает двигатель и регулятор от выхода со строя при механическом заклинивании двигателя.

Во время работы регулятор выдает данные об оборотах двигателя, токе, напряжении батарей через порт UART в формате:

Данные выдаются с периодичностью примерно 1 секунда. Скорость передачи по порту 9600.

Настройка регулятора

Для настройки регулятора его следует подключить к компьютеру с помощью USB-UART переходника. Скорость передачи по порту 9600.

Переход регулятора в режим настройки происходит при включении регулятора, когда задающий сигнал потенциометра больше нуля. Т.е. Для перевода регулятора в режим настройки следует повернуть ручку задающего потенциометра, после чего включить регулятор. В терминале появится приглашение в виде символа «>«. После чего можно вводить команды.

Регулятор воспринимает следующие команды (в разных версиях прошивки набор настроек и команд может отличаться):

h — вывод списка команд;
? — вывод настроек;
c — калибровка задающего сигнала;
d — сброс настроек к заводским настройкам.

команда «?» выводит в терминал список всех доступных настроек и их значение. Например:

Изменить нужную настройку можно командой следующего формата:

pwm.start=15

Если команда была дана корректно, настройка будет применена и сохранена. Проверить текущие настройки после их изменения можно командой «?«.

Измерения аналоговых сигналов (напряжение, ток) выполняются с помощью АЦП микроконтроллера. АЦП работает в 8-ми битном режиме. Точность измерения занижена намеренно для обеспечения приемлемой скорости преобразования аналогового сигнала. Соответственно, все аналоговые величины регулятор выдает в виде 8-ми битного числа, т.е. от 0 до 255.

Список настроек, их описание:

Параметр Описание Значение
motor.type Тип мотора 0-Sensorless; 1-Sensored
motor.magnets Кол.во магнитов в роторе двигателя. Изпользуется только для расчета оборотов двигателя. 0..255, шт.
motor.angle Угол опережения фазы. Используется только для Sensorless двигателей. 0..30, градусов
motor.start.type Тип старта. Используется только для Sensorless двигателей. 0-без определения положения ротора; 1-с определением положения ротора; 2-комбинированный;
motor.start.time Время старта. 0..255, мс
pwm Частота PWM 16, 32, КГц
pwm.start Значение PWM (%) для старта двигателя. 0..50 %
pwm.min Значение минимального значения PWM (%), при котором двигатель вращается. 0..30 %
voltage.limit Напряжение батареи, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255*
voltage.cutoff Напряжение батареи, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255*
current.limit Ток, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255**
current.cutoff Ток, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255**
system.sound Включить/выключить звуковой сигнал, издаваемый двигателем 0-выключен; 1-включен;
system.input Задающий сигнал 0-потенциометр; 1-RC сигнал;
system.damper Демпфирование входного сигнала 0..255, условные единицы
system.deadtime Значение Dead Time для ключей в микросекундах 0..2, мкс

* — числовое значение 8-ми битного аналого цифрового преобразователя.
Рассчитывается по формуле: ADC = (U*R6/(R5+R6))*255/5
Где: U — напряжение в Вольтах; R5, R6 — сопротивление резисторов делителя в Омах.

** — числовое значение 8-ми битного аналого цифрового преобразователя.
Рассчитывается по формуле: ADC = U*255/5
Где: U — напряжение датчика тока в Вольтах, соответствующее требуемому току.

Фьюзы микроконтроллера должны быть выставлены на работу с внешним кварцем.
Строка для программирования фьюзов с помощью AVRDUDE:

-U lfuse:w:0xFF:m -U hfuse:w:0xDC:m

Источник

Adblock
detector