Меню

Системы автоматической стабилизации сар напряжения генератора постоянного тока

I.5. Примеры систем автоматического регулированияI.5.1. Статическая САР напряжения генератора

Рис. I. 14. Принципиальная электрическая схема

статической САР напряжения генератора.

Г – генератор, якорь которого вращается от постороннего двигателя с постоянной угловой скоростью w = const;

ОВГ – обмотка возбуждения генератора;

ЭМУ – электромашинный усилитель, предназначенный для усиления сигнала по току;

ОВ ЭМУ – обмотка возбуждения электромашинного усилителя;

ЭУ – электронный усилитель для усилений сигнала по напряжению;

Rн – сопротивление нагрузки генератора;

Iэму, Iг, I — токи, соответственно, в обмотках возбуждения ЭМУ, Г и нагрузке;

П – потенциометр задания.

Здесь объектом управления ОУ является генератор со своей ОВ Г, все остальные элементы схемы составляют регулирующее устройство РУ.

Цель САР – обеспечить поддержание постоянства напряжения генератора при изменении его нагрузки. Величину напряжения Uг, которую генератор должен поддерживать с некоторой точностью на своих зажимах, несмотря на колебания Rн, задается с помощью напряжения Uзд, снимаемого с потенциометра П.

Непосредственно из рис. I.14 можно получить зависимости, которые понадобятся нам в дальнейшем:

DU = Uзд – U г, (I.5.2)

где Е г– ЭДС генератора,

R я – сопротивление якорной цепи.

Из принципиальной схемы САР напряжения генератора получим функциональную схему. Начинать построение функциональной схемы рекомендуется с сумматора, который в принципиальной схеме представлен частью электрической схемы, предназначенной для сравнения сигналов Uзд и Uг. Полученный в соответствии с формулой (I.5.2) сигнал рассогласования DU поступает далее по цепочке – ЭУ, ЭМУ, Г. Выходной сигнал генератора по цепи отрицательной обратной связи поступает на сумматор. Отметим также, что на генератор воздействует возмущение R н.

Рис. I. 15. Функциональная схема статической САР генератора напряжения.

В установившемся режиме напряжение генератора Uг, а, следовательно, и Iг , и Iэму постоянны.

Пусть в некоторый момент времени нагрузка на генератор скачкообразно изменится (допустим, ток нагрузки I скачком возрастает). Из (I.5.1) видно, что в этом случае Uг в первый момент скачком уменьшится, а напряжение рассогласования DU согласно (I.5.2) скачком возрастает. Этот сигнал DU после усиления будет в процессе регулирования восстанавливать упавшее в первый момент напряжение Uг. До какого значения будет подниматься этот сигнал Uг? Будет ли он равен после окончания переходного процесса напряжению Uзд? В статической САР – никогда. Действительно, в случае равенства Uг и Uзд согласно (I.5.2) DU будет равно нулю, а это означает, что и IЭМУ, и I г и, самое главное, Uг должны быть равны нулю, что противоречит назначению САР – поддерживать с некоторой точностью постоянным заданное напряжение на зажимах генератора.

Таким образом, наличие в установившемся режиме статической ошибки DU ¹ 0 является необходимым для функционирования системы. Именно эта ошибка DU после ее усиления электронным и электромашинным усилителям и определяет величину Uг. Нетрудно понять, что величина этой статической ошибки обратно пропорциональна коэффициенту усиления прямой цепи (см. рис. I.15), ибо, чем больше этот коэффициент усиления, тем меньше должна быть ошибка DU, чтобы получить требуемое Uг. Перейдем теперь к математической стороне дела.

Читайте также:  Стабилизатор напряжения применяемый для котлов

Рассмотрим сначала отдельно взятый генератор без регулирующего устройства. Мы уже знаем, что напряжение на зажимах генератора определяется выражением (I.5.1). Из этого выражения следует, что при холостом ходе, когда R н® ¥ , т.е. I = 0, имеет место равенство

При номинальной нагрузке I = Iн

Следовательно, изменение напряжения на генераторе в установивше6мся режиме от изменения нагрузки от I = 0 до I = Iномбез регулирующего устройства DUг без ру (т.е. статическая ошибка, соответствующая указанному изменению нагрузки) будет

DUг без ру = Uгхх – Uгн = Е г – Ег + I нR н = I нR я . (I.5.3)

Теперь обратимся к рис. I.15, т.е. случаю, когда помимо объекта управления – генератора – присутствует и регулирующее устройство.

Будем считать, что рабочая точка находится на линейных участках характеристик элементов САР, поэтому

где Еэму– ЭДС ЭМУ.

Подставив в это уравнение для Ег значения Еэмуи Iэму, получим

С учетом полученного выражения для Ег соотношение (I.5.1) примет вид

и принимая во внимание (I.5.2), получим

Видно, что выходная (регулируемая) величина Uг линейно зависит от тока нагрузки I. Найдем изменение напряжения на генераторе с регулирующим устройством при изменении нагрузки от I = Iхх= 0 до I = Iн При холостом ходе, т.е. при Iхх= 0 из (I.5.4) следует, что

При достаточно большом коэффициенте усиления k, величину которого можно легко менять за счет изменения коэффициента усиления kэ электронного усилителя, соотношение близко к единице, и, следовательно, (здесь статической ошибки, определяемой величиной IR я, нет).

При номинальной нагрузке

появляется статическая ошибка

Из сравнения (I.5.3) и (I.5.5) ясно, что в САР напряжения генератора по сравнению с одиночным генератором (без регулирующего устройства) статическая ошибка уменьшается в (1 + k) раз. Рассмотрим статические характеристики САР генератора при наличии и отсутствии регулирующего устройства (рис. I.16).

Для удобства примем при холостом ходе , тогда статические характеристики САР при наличии и отсутствии регулирующего устройства начнутся при I = Iхх= 0 из одной точки.

Видно, что для различных значений нагрузки появляется различная по величине статическая ошибка (она растет с ростом тока нагрузки I), причем для САР с регулирующим устройством статическая ошибка значительно меньше, чем без регулирующего устройства. Из (I.5.5) ясно, что для уменьшения статической ошибки надо увеличивать коэффициент усиления системы k, имея, правда, в виду (это будет показано в дальнейшем), что с ростом k уменьшается устойчивость системы.

Мы рассмотрели статическое управление при изменении нагрузки. Аналогично можно рассмотреть статическое уравнение при изменении задающего сигнала.

Источник



Выбор Системы автоматического регулирования напряжения и частоты

Системы автоматического регулирования напряжения (САРН) и частоты (САРЧ) для судовых генераторов выбирают в зависимости от тех требований, которые предъявляют к СЭЭС с учётом условий эксплуатации. Правила Регистра предусматривают следующие требования стабилизации напряжения и частоты вращения: системы стабилизации напряжения (ССН) генераторов должны поддерживать в установившихся режимах напряжение СГ с точностью ±2,5% для диапазона нагрузок от холостого хода до номинальной при изменении cosj от 1 до 0,4. В переходных режимах при набросе на СГ 100% номинального тока и сбросе его или при сбросе 50% номинального тока максимальное изменение напряжения должно быть не более 20% и восстанавливаться до номинального значения с точностью ±2,5% за 1,5 с.

Читайте также:  Usb измеритель напряжения тока емкости

Частота тока зависит от частоты вращения приводного двигателя. Постоянство частоты тока — основное условие нормальной работы потребителей электроэнергии. Поэтому дизели всегда имеют автоматические регуляторы частоты вращения, воздействующие на подачу топлива; а синхронные генераторы – автоматические регуляторы напряжения, воздействующие на ток возбуждения. САРН и САРЧ относятся к системам стабилизации. Системы автоматической стабилизации регулируемой величины могут быть статическими и (или) астатическими по отношению к внешнему воздействию. Первая обеспечивает установившееся значение регулируемой величины, зависящее от внешнего воздействия, а вторая – независимое. В САРЧ дизелей внешним воздействием является мощность, приложенная к выходному валу, которая равна активной мощности, отдаваемой генератором, делённой на КПД генератора. В САРН генераторов внешним воздействием является ток статора, который равен току нагрузки.

Практически характеристики регулируемой величины не являются прямыми линиями, так как любая САР имеет некоторую нечувствитнльность и нестабильность в работе. Статическая характеристика оценивается :

1 статизмом системы

где d – статизм системы

Ао – начальное значение регулируемой величины

Аном – номинальное значение регулируемой величины

2 коэффициентом статизма

где Кс – коэффициент статизма

Вном – номинальное значение внешнего воздействия

Качество САР в установившемся режиме оценивается точностью поддержания регулируемой величины и значением статической ошибки или статизмом системы. Астатическая характеристика имеет статическую ошибку, равную нулю, то есть лучшее качество по сравнению со статической характеристикой. Последняя применяется при параллельной работе агрегатов.

Существует два основных принципа автоматического регулирования: по отклонению регулируемой величины (САР по отклонению), по внешнему воздействию на регулируемую величину (САР по внешнему воздействию) и комбинированные (САР по отклонению и по внешнему воздействию). САРЧ и САРН судовых дизель-генераторов в большинстве случаев являются комбинированными. Такие регуляторы называют двухимпульсными. По сравнению с одноимпульсными, они обеспечивают более высокую точность регулирования.

Судовые синхронные генераторы серии МСК имеют комбинированную систему самовозбуждения выполненную по принципу компаундирования. Она выполняет все требования Регистра, обладает высокой точностью стабилизации напряжения. Требуемая точность поддержания напряжения обеспечивается совместной работой схемы фазового компаундирования и корректра напряжения. С помощью корректора напряжения можно осуществить ручную регулировку напряжения генератора с помощью потенциометров точной и грубой уставки.

В САРН СГ типа МСК (рисунок ниже) используют трансформатор компаундирования ТК с подмагничиванием и магнитным шунтом МШ. Обмотка подмагничивания wп указанного трансформатора получает питание от КН, который представляет собой устройство, состоящее из полупроводниковых элементов и работающее в импульсном режиме. При уменьшении напряжения СГ корректор напряжения действует так, что ток подмагничивания Iп уменьшается, полезный результирующий магнитный поток Ф увеличивается, возрастает выходное напряжение о6мотки w2, увеличивается ток Iв и напряжение СГ восстанавливается. При увеличении напряжения СГ корректор напряжения увеличит ток подмагничивания ТК, что вызовет уменьшение магнитного потока Ф, уменьшение тока Iв и восстановление напряжения генератора до заданного значения.

Читайте также:  Что регулирует резистор силу тока или напряжение

Рисунок 2 — Структурная схема САРН СГ типа МСК с фазовым компаудированием и корректором напряжения

Двухимпульсный автоматический регулятор частоты (АРЧ) обладает высокой точностью и быстродействием и состоит из датчика частоты ДЧ, датчика активного тока ДТ, магнитного усилителя А и электромагнита УА.

Рисунок 3 – Схема двухимпульсного автоматического регулятора частоты

Датчик частоты представляет собой двухполупериодный выпрямитель-демодулятор, в диагональ которого включен выход частотного индуктивно-емкостного фильтра L1-C1-L2-C2L3. При резонансной частоте (50 Гц) выходное напряжение фильтра Uf находится в квадратуре с опорными напряжениями U1 и U2 трансформатора Т2., При отклонении частоты от резонансной выходное напряжение Uf изменяет свою начальную фазу. Выходные напряжения ДЧ равны U3 = U1 + Uf и U4=U2-Uf , поэтому выходной сигнал ДЧ пропорционален отклонению частоты от номинальной, а его полярность определяется направлением этого отклонения. При понижении частоты обмотки управления 9-10 и 11-12 подмагнитят ДМУ, сработает электромагнит УА и откроет золотник гидроусилителя, который сместит топливную рейку до полной компенсации отклонения частоты от номинальной. При этом подмагничивание ДМУ прекратится, УА потеряет питание и гидроусилитель прекратит работу.

Датчик активного тока практически не отличается от датчика типа УРЧН-IД. В цепь дополнительно включена отрицательная обратная связь от поворотного трансформатора TR, связанного кинематически с гидроусилителем. В установившемся режиме напряжение TR уравновешивает выходное напряжение ДТ. При набросе активной нагрузки обмотки управления 5-6 и 7-8 подмагничивают ДМУ, и гидроусилитель переместит топливную рейку в положение, соответствующее новой нагрузке, после чего поворотный трансформатор ТR своим напряжением скомпенсирует сигнал ДТ. ДМУ АРЧ имеет дополнительную обмотку смещения 13-14 и обмотку положительной обратной связи по току нагрузки 15-16.

Двухимпульсный электрический АРЧ по сравнению с электромеханическим повышает качество процесса регулирования частоты и устойчивость распределения активных нагрузок методом мнимостатических характеристик.

Источник

САР напряжения генератора постоянного тока

date image2014-02-02
views image741

facebook icon vkontakte icon twitter icon odnoklasniki icon

Для примера рассмотрим схему САР напряжения генератора постоянного тока (рис.37).

Выведем дифференциальное уравнение исполнительного двигателя постоянного тока. Его схема замещения изображена на рис. 38.

Для якорной цепи справедливо уравнение

Если принять, что , гдеj – угол поворота вала двигателя, то

где – постоянная времени якорной цепи; , – коэффициенты пропорциональнсти.

Если учесть, что , гдеJ – момент инерции якоря, M — электромагнитный момент, Мс – момент сторонних сил, то получим

Здесь – электромеханическая постоянная времени;

, – передаточные функции по напряжению и моменту сторонних сил.

Структурная схема двигателя постоянного тока показана на рис.39.

Аналогичным образом выводится передаточная функция генератора постоянного тока, которая с учетом пренебрежения индуктивностью обмотки якоря имеет вид, показанный на рис.40, где

Усилитель можно представить пропорциональным звеном с коэффициентом усиления Kу. В окончательном виде структурная схема САР напряжения генератора постоянного тока показана на рис.41.

Лекция 5.Временные характеристики

Источник

Adblock
detector