Синхронный преобразователь напряжения что это

Синхронный комбинированный преобразователь

16 декабря 2015

Комбинированный DC/DC-преобразователь позволяет получить стабилизированное напряжение, когда входной уровень может быть как ниже, так и выше выходного. В статье описан процесс проектирования такого преобразователя на четырех MOSFET-транзисторах и контроллере LM5175 производства компании Texas Instruments.

Имеющееся на сегодняшний день разнообразие DC/DC-преобразователей свидетельствует о важности преобразования широкодиапазонного входного напряжения в стабилизованное выходное напряжение [1]. Эта задача особенно актуальна в том случае, если входное напряжение меняется непрерывно и может быть как выше, так и ниже выходного. Способ конвертирования в этом случае называют комбинированным преобразованием. Оно используется при зарядке аккумуляторов, в светодиодном освещении, в автомобильной электронике [2].

Рассмотрим аспекты создания и выбора схем комбинированных преобразователей, в частности – выбор компонентов, вычисление потери мощности. В завершение кратко расскажем о программном пакете [3], который позволяет упростить и ускорить процесс проектирования схемы преобразователя.

Работа синхронного комбинированного преобразователя

Комбинированный преобразователь позволяет обеспечить стабилизацию выходного напряжения при изменении входного напряжения в больших пределах. На рисунке 1 изображен синхронный (неинвертирующий) комбинированный преобразователь на четырех транзисторах.

Рис. 1. Выходной каскад синхронного комбинированного преобразователя на четырех транзисторах

Рис. 1. Выходной каскад синхронного комбинированного преобразователя на четырех транзисторах

Основное достоинство комбинированного преобразователя – возможность достижения максимального КПД в режимах понижающего или повышающего преобразования независимо от уровня входного напряжения и нагрузки. Данный преобразователь обеспечивает положительное выходное напряжение. В отличие от похожего, переключаемого (инвертирующего) понижающе-повышающего преобразователя, он имеет меньшие потери мощности и большую плотность мощности, распределенную в объеме, по сравнению с SEPIC (преобразователь с несимметрично нагруженной индуктивностью), обратноходовой и каскадной топологиями.

Четыре мощных MOSFET-транзистора, показанные на рисунке 1, расположены в виде понижающих и повышающих плеч полного моста. Переключающие узлы транзисторов SW1 и SW2 соединены через дроссель Lf. Синхронный процесс понижающего или повышающего преобразования происходит только тогда, когда входное напряжение находится либо выше, либо ниже выходного напряжения. Верхний MOSFET-транзистор противоположного невключенного плеча служит в качестве проходного транзистора. Важно отметить, что когда входное напряжение приближается к выходному – включенное понижающее или повышающее плечо достигает предполагаемого ограничения рабочего цикла, вызывая переход в комбинированный режим работы. Режим работы должен меняться плавно и автономно, без резкого изменения конфигурации управления.

Контроллер LM5175 [4], использует уникальный алгоритм переключения в комбинированном режиме, посредством чего понижающее и повышающее плечи переключаются на пониженной частоте квазичередующимся образом, что дает существенные преимущества в эффективности и уменьшении потерь. Метод управления преобразователем в режиме токового ограничения во всем диапазоне выходных напряжений, особенно в точке перехода из режима повышения в режим понижения (и наоборот), обеспечивает плавный переход. Требуется только, чтобы был установлен датчик тока, который позволил бы контролировать ток, протекающий через дроссель и транзисторы. Скорость нарастания тока в дросселе зависит от разности VIN и VOUT. Быстрое изменение разности VIN и VOUT приводит к апериодической переходной характеристике, что влечет за собой образование помех по питанию (PSR). Источником помех является выходной каскад преобразователя, в котором быстрые переключения транзисторов вызывают переходные процессы.

Схема комбинированного преобразователя в режиме ограничения тока

На рисунке 2 показана схема синхронного комбинированного преобразователя с четырьмя ключами. Схема состоит из силового каскада (четыре силовых транзистора), ШИM-контроллера, датчика тока. ШИM-контроллер может работать в режиме частотной модуляции, что позволяет расширить спектр SSFM и снизить уровень электромагнитных помех (EMI) [5]. В кристалл котроллера внедрена защита от пониженного/повышенного напряжения питания (UVLO). В цепь обратной связи включены компенсационные цепочки.

Рис. 2. Схема комбинированного преобразователя с четырьмя ключами и контроллером в токовом режиме

Рис. 2. Схема комбинированного преобразователя с четырьмя ключами и контроллером в токовом режиме

Данное руководство предназначено для ускорения процесса разработки [3] и служит для анализа и проектирования комбинированного преобразователя с четырьмя ключами. Рекомендуется последовательно переходить от спецификации преобразователя к выбору компонентов, затем – к обзору характеристик (эффективности, рассеиваемой на мощности, и графику Боде), после чего в случае необходимости выполнять повторное проектирование. Взяв ШИМ-контроллер LM5175 в качестве основы, рассмотрим поэтапное проектирование преобразователя, работающего на частоте 400 кГц, который обеспечивает выходное напряжение 12 В/6 А при входном напряжении 6…42 В.

Этап 1: Основные параметры

На рисунке 3 показан первый этап. На данном этапе разработчик должен ввести основные параметры преобразователя – диапазон входного напряжения, уровень выходного напряжения, ток нагрузки и частоту переключения.

Рис. 3. Ввод данных для автоматического генерирования схемы: этапы 1…3 – рабочие спецификации, дроссель и токочувствительные резисторы

Рис. 3. Ввод данных для автоматического генерирования схемы: этапы 1…3 – рабочие спецификации, дроссель и токочувствительные резисторы

Этап 2: Дроссель фильтра

На этом этапе производится расчет индуктивности дросселя Lа. Уровень индуктивности зависит от диапазона входного напряжения и необходимого уровня тока пульсации (пила). Формула (1) определяет уровень требуемой индуктивности в точках пульсации тока 30% и 80%.

45031

(1)

Работу дросселя характеризуют три основных параметра: сопротивление на постоянном токе (DCR), ток насыщения (ISAT) и потери в сердечнике. Обычно дроссель изготавливается на сердечнике из cпрессованного железного порошка. Такой сердечник может работать на частотах до 400 кГц. Их преимущество состоит в постепенном снижении индуктивности по мере увеличения тока. Дроссели с ферритовым сердечником имеют более низкие потери, но их не рекомендуется применять, так как на максимальном токе в начале насыщения возможно резкое падение индуктивности.

Этап 3: Датчик тока

Датчик тока может быть построен на основе трансформатора тока, датчика Холла или обычного резистивного шунта. В данном случае описывается датчик тока на основе резистивного шунта. Уровень сопротивления датчика рассчитывается по параметрам порогового значения напряжения контроллера и максимального тока (пила) протекающего через дроссель. Формула (2), представленная для LM5175, определяет порог 80 мВ в точке минимума в повышающем режиме и 160 мВ в точке максимума в повышающем режиме. Мощность шунта достигает максимума при самом низком значении входного напряжения, когда коэффициент повышения достигает максимального значения. Использование резисторов типоразмеров 1225 и 2512 позволяет получить шунт минимальных габаритов.

45183

(2)

Формула (3) позволяет рассчитать емкость конденсатора Cslope. Она определяет компенсацию наклона тока пилы. В режиме BUCK к скорости нарастания тока дросселя добавляется компенсационная составляющая, добавляя информацию об увеличении скорости нарастания. В режиме BOOST компенсационная составляющая изменяет информацию о скорости нарастания тока в сторону снижения.

45194(3)

Этапы 4 и 5: Расчет фильтра. Входной и выходной конденсаторы

На рисунке 4 представлены графики фазо-частотных характеристик преобразователя. Данные графики построены исходя из значений фильтрующих конденсаторов, причем во всех режимах работы DC/DC-преобразователя.

Рис. 4. Ввод данных для этапов 4…7: выбор емкости фильтра, схема компенсатора и анализ графика Боде

Рис. 4. Ввод данных для этапов 4…7: выбор емкости фильтра, схема компенсатора и анализ графика Боде

Использование керамических конденсаторов с типом диэлектриков X5R или X7R позволяет создавать устройства с высокой плотностью монтажа. В отдельных случаях при требуемой большой емкости возможно использование двух типов компонентов – параллельное соединение электрических и керамических конденсаторов. А в устройствах с высокой плотностью монтажа использование керамических конденсаторов с диэлектриками X5R и X7R позволяет уменьшить емкость электрического конденсатора и, следовательно, его размеры будут меньше. Формула (4) показывает приблизительную оценку емкостей с учетом напряжения пиковых пульсаций, но без учета последовательного сопротивления (ESR) компонента.

45208(4)

Зная уровень емкости и ESR, путем обратных вычислений получим соответствующие напряжения пиковых пульсаций:

45216

(5)

В режиме BUCK среднеквадратичный ток через конденсатор (и напряжение пульсации) достигает максимального значения при 50%-ном рабочем цикле. В режиме BOOST наибольшее значение выходного среднеквадратичного тока, протекающего через конденсатор, наблюдается при максимальном рабочем цикле. Формулы для определения среднеквадратичных токов имеют следующий вид:

45223

(6)

Этап 6:расчет Soft start, частоты генератора, уровня блокировки питания UVLO

Емкость плавного запуска (Soft start) определяется по следующей формуле:

45232(7)

Расчет задающей емкости для частоты генерации вычисляется с помощью формулы (8), где Gd — коэффициент проводимости, связанный с контроллером:

45239(8)

Расчет резистивного делителя, определяющего уровень защиты от пониженного напряжения питания, вычисляется по формуле (9), где VUV(ON) — уровень напряжения встроенного компаратора UVLO (1,23 В – On, 0,79 В – Off):

45246(9)

Этап 7: Расчет компенсационной цепи обратной связи

Устойчивость работы преобразователя определяется фазо-частотной характеристикой (BODE).

Частота, соответствующая нулю функции компенсации, определяется расчетом RC и CC1, обеспечивая повышение запаса по фазе. Полюс, обусловленный CC2, расположен около нуля функции выходного конденсатора (ESR) или половинной частоты переключения, если она ниже нуля. Этот полюс обеспечивает ослабление шума и уменьшение уровня выходных пульсаций. Значения элементов компенсации рассчитываются по формуле (10):

45253(10)

Для повышения полосы пропускания следует увеличить сопротивление резистора RC. При этом требуется скорректировать значение CC1, так как данный конденсатор влияет на уровень запаса по фазе. Без компенсации преобразователь имеет нуль функции на частоте, равной fRHPZ (0 Дб). Обычно запаса по фазе на данной частоте не хватает, что может привести к нестабильной работе преобразователя. Ситуация усложняется еще больше, так как данная частота входит в область работы преобразователя в режиме BOOST. Для улучшения работы преобразователя в данном режиме вносится дополнительная частотная компенсация. Для расчета компенсирующих цепочек вводится частота fcross. Значение fcross выбирается примерно на 50% ниже fRHPZ. Данная коррекция позволит получить дополнительный запас по фазе. Описанное соотношение выражается формулой (11):

45261(11)

В режиме токоограничения (BOOST) частота переключения транзисторов тоже может снизиться до частоты fcross, но уменьшение Ку и улучшение ФЧХ (ниже fcross) усилителя ошибки за счет компенсации позволяет снизить вероятность возбуждения преобразователя.

Этап 8: Оценка КПД

Этап 8, показанный на рисунке 5, представляет собой расчет КПД и рассеиваемой мощности на элементах схемы. Особое внимание уделим характеристикам MOSFET-транзисторов: внутреннему сопротивлению канала RDS(ON), заряду затвора, крутизне характеристики, пороговому напряжению «затвор-сток». Также рассмотрим параметры встроенного диода: прямое падение напряжения на диоде, время рассасывания зарядов.

Рис. 5. Этап 8: спецификации MOSFET, график эффективности и анализ потерь мощности

Рис. 5. Этап 8: спецификации MOSFET, график эффективности и анализ потерь мощности

В режиме BOOST уровень тока в дросселе выше, чем в режиме BUCK. Соответственно, MOSFET-транзисторы в повышающем плече должны иметь меньшее RDS(ON), чем транзисторы в понижающем плече.

С помощью формул (12) и (13) вычисляются статические и динамические потери и потери на заряд затвора:

45268

(12)

45276

(13)

Дополнительные потери вносит сердечник в дросселе, сопротивление обмотки дросселя на постоянном токе, «мертвое время» (время, когда все транзисторы находятся в состоянии “OFF”), измерительный шунт. Если учитывать потери в целом, то КПД комбинированного преобразователя с четырьмя транзисторами и стабилизированным выходным напряжением 12 В достигает 96%.

Заключение

Комбинированные преобразователи для промышленных и автомобильных приложений отвечают особым требованиям по мощности. Помимо этого, к достоинствам синхронного комбинированного преобразователя с четырьмя ключами можно отнести простоту эксплуатации, высокую производительность, компактный размер и низкую стоимость комплектующих. Программный калькулятор начального проектирования является удобным инструментом для ускоренного проектирования и расчета схемы преобразователя.

Источник

Синхронный понижающий преобразователь LT3800 от компании Linear

Бродя по зарубежным интернет площадкам мое внимание привлек интересный модуль понижающего преобразователя с заявленными характеристиками: — входное напряжение 6.5-60В, — выходное напряжение 1.25-30В, ток до 10А, КПД до 97%. При заявленных характеристиках на модуле отсутствуют какие — либо радиаторы для охлаждения активных элементов. Основу модуля составляет синхронный понижающий преобразователь LT3800. Модуль для тестов был любезно предоставлен администрацией сайта Паяльник.
Размер модуля составляет 21 х 75 х 16мм (20мм с учетом высоты дросселя).

4$.


Сборка модуля довольно качественная и не вызывает нареканий.


Принципиальная схема модуля.

После подключения модуля к источнику питания 12В потребление тока модулем составило 200-300 мА на холостом ходу, что меня очень удивило, но покрутив регулятор напряжения модуля ток холостого хода резко упал до 10-20 мА. Данный эффект наблюдается, если регулятором выходное напряжение модуля установить выше, чем входное напряжение. Так что будьте внимательны!
При тестировании модуля наблюдался очень сильный нагрев дросселя (более 100 градусов при нагрузке 40 Вт). Было принято решение заменить дроссель на более мощный(взял из компьютерного блока питания).


Модуль после переделки.

С данной переделкой температура дросселя пришла в норму без критического нагрева.
Экспериментальным путем было выяснено, что модуль уверенно держит нагрузку до 60Вт. Температура ключей и LT3800 составляет 70-80 градусов при постоянной нагрузке 60 Вт на выходе. При превышении нагрузки выше 70 Вт наблюдался резкий очень сильный разогрев верхнего ключа более 150 градусов. Во избежание выхода из строя модуля не рекомендую подключать нагрузку более 60Вт.


Пульсации напряжения (12В) на выходе модуля составляют 80-100 мВ при отсутствии нагрузки. Входное напряжение — 28В.


При нагрузке 20 Вт (12В 1,7А) пульсации напряжения немного увеличились до 200мВ. Входное напряжение — 28В.


При нагрузке 40 Вт (12В 3,4А) пульсации напряжения составили 240мВ. Входное напряжение — 28В.


При нагрузке 60 Вт (12В 5А) пульсации напряжения увеличились до 260мВ. Входное напряжение — 28В.


При нагрузке 50 Вт (5В 10А) в режиме стабилизации тока пульсации напряжения составили 340мВ. Входное напряжение — 28В.

Ситуацию с пульсациями напряжения можно улучшить повесив керамику на выходе модуля 10 мкФ (рекомендуемую в даташите LT3800), которую не предусмотрел производитель модуля.

Модуль держит заявленные 10А на выходе, а при попытке увеличить выходной ток выше 10А модуль переходит в режим стабилизации тока (около 10А). А при полном коротком замыкании модуль уходит в защиту с самовосстановлением работы, после устранения короткого замыкания. Кратковременно данный модуль может выдавать 10А при напряжении 12В (120Вт), но без внешнего охлаждения преобразователь может выйти из строя.

ИТОГ
Модуль соответствует заявленным характеристикам. Правда на этапе испытаний на вход модуля не удалось подать напряжение 60В ввиду отсутствия данного источника питания. Выходное напряжение регулируется в пределах 1.25-30В. Выходной ток 10А (главное не превышать выходную мощность более 60Вт). КПД устройства составило 90-94%(при нагрузке 20-60Вт).
Если Вы планируете использовать модуль с штатным дросселем, то не рекомендуется нагружать модуль более, чем на 40Вт. Если нужна бОльшая мощность, то дроссель необходимо заменить, и приклеить с помощью термоклея радиатор на ключевые элементы.
Модуль можно использовать для сборки регулируемого блока питания мощностью 100Вт, правда необходимо будет добавить обратную связь, для регулировки тока.

К сожалению преобразователи на LT3800 на зарубежных интернет — площадках нелегко найти, так как продавцы нигде не указывают тип примененной микросхемы. Рекомендую в поиске указать — dc-dc step down 10a (15a), и по детальным фото модуля искать модули на основе LT3800.
Кому нужен модуль большей мощности на LT3800, то рекомендую обратить внимание на следующий модуль(dc-dc step down 15a 200W). Он легко выдерживает мощность 100Вт, и слегка чуть теплый. Ток у меня он выдержал аж 20А (предел мультиметра). При таком токе провода прибора мгновенно разогреваются. Стресс с КЗ не рекомендую устраивать на модуле, который ниже, чтобы он не вышел из строя. Судя по комментариям с Ютуба данный модуль выходит из строя при коротком замыкании. Скорее всего китайцы с шунтом 0,07Ом что-то намудрили и защита не работает. Будьте осторожны!

Источник

Синхронная или асинхронная? Правильный выбор топологии DC/DC преобразователя повышает эффективность системы

Meng He, Maxim Integrated

Application Note 6129

Знаете ли вы, что повышение окружающей температуры на каждые 10 градусов сокращает время жизни компонентов на 50% [1]? Что снижение или колебания напряжения источников питания могут приводить к преждевременным отказам, и даже выгоранию деталей вашей системы? Несомненно, почти каждый согласится с тем, что источники питания для энергоемких приложений должны быть долговечными и эффективными. Но что насчет их топологии? Должна ли она быть синхронной или асинхронной? Посмотрим на преимущества и недостатки каждой.

Варианты питания вашего устройства

Каждой электронной системе нужен источник питания, и обычно напряжение источника питания выше, чем требуется приложению. Представьте, что у вас есть источник 9 В, и вам нужно понизить напряжение до необходимых вашей системе 5 В. В вашем распоряжении несколько вариантов:

  1. Простой делитель напряжения с каким-либо элементарным регулятором, таким, как стабилитрон. Стабилитрон вместе с резистором, ограничивающим ток, понизят напряжение с 9 В до 5 В, при этом на резисторе упадет 4 В. В результате мы получим тепло и потери энергии.
  2. 5-вольтовый линейный регулятор (LDO). Опять же, вы берете 9 В и получаете 5 В, а 4 В падает на регуляторе. Если схема потребляет 1 А, то на регуляторе рассеивается мощность 4 Вт. И опять вы можете сказать, что 4 Вт неиспользуемой мощности теряются в виде тепла.
  3. DC/DC преобразователь. Здесь ключ, как правило, с ШИМ управлением, коммутирует подключенные к его выходу катушку индуктивности и конденсатор. Когда выходное напряжение достигает 5 В, коэффициент заполнения импульсов ШИМ падает почти до нуля. Ключ потребляет очень маленький ток, поэтому рассеиваемая мощность тоже мала. Это, безусловно, самый эффективный вариант.

Входные напряжения DC/DC преобразователя могут быть любыми из стандартного ряда 6, 9, 12, 24 или 48 В. Силовой трансформатор понижает 120 В переменного тока до стандартного уровня напряжения. Затем после выпрямления и фильтрации постоянное напряжение стабилизируется для коммерческого или промышленного использования. Например, установленные для систем телефонии 48 В, определяются напряжением батарей резервного питания. Если напряжение в сети переменного тока упадет, сразу же подключится резервная система. Совсем другая история – портативное оборудование. Эти устройства обычно работают от батарей, которые сразу дают постоянное напряжение, но им требуется стабилизированное напряжение. Поскольку напряжение батареи со временем уменьшается, его надо повышать, а уже потом стабилизировать. Так что, если ваша система работает от 3.3 В, вы должны поддерживать эти 3.3 В, даже когда напряжение батареи упадает.

При разработке источника питания вы можете выбрать, «как вам представляется», дешевое решение, вроде упомянутого выше простого делителя напряжения и стабилитрона. Заметим, что мы сказали «как представляется», дешевое, так как не принимали во внимание ничего, кроме перечня комплектующих изделий. Эти подходы содержат скрытые и дополнительные затраты на потери мощности, приводящие к большому тепловыделению и сокращению срока службы электронных компонентов системы. Заметим, что LDO регуляторы имеют очень низкие выходные шумы, но имеют такие недостатки, как высокая рассеиваемая мощность, большое падение напряжения и меньшее время работы от батарей.

В наши дни разработчики переключились на DC/DC преобразователи, чтобы получать оптимальное сочетание эффективности, тепловыделения, точности, реакции на переходные процессы и стоимости. Но путь проектирования оптимальной DC/DC системы питания может быть таким же сложным, как ориентирование на минном поле без карты. Рабочая температура преобразователей ограничивает их максимальную выходную мощность, и повышается с уменьшением размеров промышленного оборудования. Кроме того, большинство устройств, как правило, имеет очень слабое принудительное охлаждение или вообще его не имеет. Так какой же вариант схемы DC/DC лучше?

Варианты схем DC/DC: синхронная или асинхронная топология

Это два компромиссных варианта. Асинхронная топология старше, и отличается потерями мощности на внешнем диоде Шоттки. Эти потери равнозначны ухудшению КПД. Здесь мы рекомендуем синхронную топологию, поскольку она обеспечивает более высокий КПД и позволяет создавать более компактные конструкции за счет встроенного эффективного MOSFET. Это фундаментальное различие иллюстрируется Рисунком 1, где сравниваются структурные схемы асинхронного преобразователя и более интегрированного синхронного решения.

Рисунок 1. Асинхронная топология DC/DC преобразователя (слева)
использует внешний диод Шоттки. В синхронной топологии
(справа) интегрирован MOSFET, заменяющий диод Шоттки.

Обсудим энергетический КПД. В последние годы поставщики аналоговых ИС начали выпускать синхронные DC/DC преобразователи, чтобы уменьшить потери мощности, возникающие в асинхронных схемах с их внешними диодами Шоттки. Теперь синхронный преобразователь содержит силовой MOSFET нижнего плеча, заменяющий внешний диод Шоттки с большими потерями. Рассеиваемая этим MOSFET мощность зависит от сопротивления открытого канала RON, в то время как потери мощности на диоде Шоттки определяются его прямым напряжением VD. При одинаковой величине тока в обеих схемах падение напряжения на MOSFET обычно меньше, чем на диоде, в результате чего в схеме с MOSFET рассеиваемая мощность ниже.

Рассеиваемая на диоде мощность для асинхронного решения вычисляется по формуле:

Мощность PFET, рассеиваемая на MOSFET в синхронной схеме равна:

Тем не менее, существуют мнения, что асинхронные понижающие преобразователи имеют более высокий КПД при малых нагрузках и больших коэффициентах заполнения [2], и что не существует единственного преобразователя, который имел бы оптимальный КПД во всем диапазоне нагрузок. Разработчики систем питания опять вынуждены выбирать меньшее из двух зол?

Рисунок 2. Характер токов в синхронном и асинхронном преобразователях.

Чтобы ответить на этот вопрос, рассмотрим, чем, в первую очередь, обусловлена высокая эффективность асинхронного преобразователя при легких нагрузках. Ток катушки индуктивности в асинхронном преобразователе течет только в одну сторону и никогда не бывает отрицательным; в синхронных преобразователях ток протекает в обе стороны, и в этом заключается его недостаток (Рисунок 2).

Рисунок 3. Многорежимная работа понижающих DC/DC преобразователей
Himalaya фирмы Maxim Integrated.

Чтобы исключить это двунаправленное протекание тока в синхронных преобразователях, вводят различные режимы для получения «псевдо-асинхронной» работы при легкой нагрузке. Современные DC/DC преобразователи поддерживают три режима (Рисунок 3):

  1. PWM @ CCM: широтно-импульсная модуляция (pulse width modulation – PWM) в режиме непрерывной проводимости (continuous conduction mode – CCM). Здесь преобразователь работает на постоянной частоте, а ток дросселя IL может становиться отрицательным. Этот режим позволяет преобразователю, сохраняя минимальный уровень пульсаций выходного напряжения, быстро отзываться на любые изменения нагрузки, даже при ее уменьшении до нуля. Однако режим PWM @ CCM дает наименьший КПД при малых нагрузках.
  2. PWM @ DCM: широтно-импульсная модуляция в режиме прерывистой проводимости (discontinuous conduction mode – DCM). Этот подход также основан на постоянной частоте переключения, но КПД при малых нагрузках улучшается благодаря исключению протекания тока IL в отрицательном направлении. Отсутствие отрицательных токов при малых нагрузках придает такому решению сходство с асинхронным.
  3. PFM с состоянием сна: частотно-импульсная модуляция (pulse frequency modulation – PFM) со спящим режимом. Этот подход повышает КПД за счет исключения протекания тока IL в отрицательном направлении, а также отключения обоих МОП транзисторов для пропуска импульсов при малых нагрузках. Во время пропуска импульсов преобразователь переходит в спящий режим, когда все неиспользуемые внутренние схемы отключаются для снижения потребляемого тока. Режим позволяет получить наилучший возможный КПД благодаря наибольшей эффективности при малых нагрузках. Платой за это является небольшое увеличение пульсаций выходного напряжения.

В диапазоне токов нагрузки от среднего до максимального все режимы работают одинаково. Различия начинают проявляться тогда, когда ток нагрузки становится меньше половины размаха тока дросселя.

Вы предполагаете, что основную часть времени ваша система будет находиться в режиме ожидания (то есть, работать с малой нагрузкой), а срок службы батареи имеет критическое значение? Тогда выбирайте режим частотно-импульсной модуляции, так как при малой нагрузке он дает возможность получить наивысший КПД. Здесь, правда, есть одна тонкость: необходимо убедиться, что увеличение выходных пульсаций и замедление переходных процессов при PFM не повлияют на работу системы в ждущем режиме.

Первостепенное значение для вашего приложения имеет переходная характеристика при легкой нагрузке? Тогда лучшим выбором будет PWM @ CCM, поскольку он обеспечивает наилучшие характеристики переходного режима, даже при нулевой нагрузке.

Разумным компромиссом между этими двумя режимами является режим PWM @ DCM.

Заключительные мысли

Технологии двигаются вперед. Замена внешнего диода Шоттки встроенным эффективным MOSFET, в сочетании с многорежимной работой, обеспечивают в современных синхронных решениях превосходный КПД при минимальных размерах устройств. Настало время принять новую синхронную технологию для повышения эффективности использования мощности в ваших следующих проектах. Это проще, круче и лучше.

Ссылки

Перевод: Дмитрий Иоффе по заказу РадиоЛоцман

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector