Меню

Синфазное входное напряжение операционного усилителя

Синфазное входное напряжение

2.1.30. Синфазное входное напряжение VIC

Среднее значение двух входных напряжений.

Смотри также родственные термины:

34 синфазное входное напряжение (операционного усилителя):

Напряжение между любым из входов операционного усилителя и общим выводом, совпадающее по амплитуде и фазе с напряжением между другим входом и общим выводом

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Смотреть что такое «Синфазное входное напряжение» в других словарях:

синфазное входное напряжение (операционного усилителя) — Напряжение между любым из входов операционного усилителя и общим выводом, совпадающее по амплитуде и фазе с напряжением между другим входом и общим выводом. [ГОСТ 18421 93] Тематики аналоговая и аналого цифровая выч.техн … Справочник технического переводчика

синфазное входное напряжение (операционного усилителя) — 34 синфазное входное напряжение (операционного усилителя): Напряжение между любым из входов операционного усилителя и общим выводом, совпадающее по амплитуде и фазе с напряжением между другим входом и общим выводом Источник: ГОСТ 18421 93:… … Словарь-справочник терминов нормативно-технической документации

входное — входное: Давление газа на входе в устройство контроля пламени; Источник … Словарь-справочник терминов нормативно-технической документации

ГОСТ 29108-91: Приборы полупроводниковые. Микросхемы интегральные. Часть 3. Аналоговые интегральные схемы — Терминология ГОСТ 29108 91: Приборы полупроводниковые. Микросхемы интегральные. Часть 3. Аналоговые интегральные схемы оригинал документа: 2.2.4.3. Время восстановления входного напряжения Интервал времени от заданного ступенчатого изменения… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 18421-93: Аналоговая и аналого-цифровая вычислительная техника. Термины и определения — Терминология ГОСТ 18421 93: Аналоговая и аналого цифровая вычислительная техника. Термины и определения оригинал документа: 51 амплитудная характеристика (операционного усилителя): Зависимость установившегося значения выходного напряжения… … Словарь-справочник терминов нормативно-технической документации

Операционный усилитель — Содержание 1 История 2 Обозначения 3 … Википедия

Источник



Диапазоны входных и выходных рабочих напряжений ОУ. Устраняем путаницу

Статья является частью руководства, посвященного практическим аспектам и особенностям проектирования электроники с использованием операционных усилителей (ОУ) – от выбора типа ОУ до тайных приемов опытного разработчика и хитростей отладки. Руководство написано Брюсом Трампом, инженером-разработчиком с почти тридцатилетним стажем, успевшим до Texas Instruments поработать в легендарной компании Burr-Brown. В настоящее время Трамп является ведущим блогером информационного ресурса Texas Instruments “E2E” по аналоговой тематике и готовит к печати книгу об операционных усилителях.

Мы будем публиковать перевод руководства Трампа на нашем сайте регулярно, дважды в месяц.

У разработчиков зачастую возникают вопросы по поводу допустимых значений питающих напряжений, диапазонов входных и выходных напряжений операционных усилителей (ОУ). Я попытаюсь прояснить ситуацию, чтобы устранить часто возникающую путаницу.

Во-первых, у обычного ОУ нет вывода земли. Стандартный операционный усилитель «не знает», какой потенциал считать нулевым. Таким образом, ОУ не различает, работает он с биполярным питанием (dual supply, ±) или с однополярным (single power supply). Схема будет прекрасно функционировать, пока значения питающих, а также входных и выходных напряжений будут находиться в рамках допустимых диапазонов.

Есть три наиболее важных диапазона рабочих напряжений:

  • Диапазон питающих напряжений (supply-voltage range) определяется как полное напряжение между выводами питания. Например, при заявленном диапазоне ±15 В полный размах напряжения составит 30 В. Диапазон рабочих напряжений питания для ОУ может быть обозначен как 6…36 В. Тогда минимальный размах напряжений составляет ±3 или +6 В. Максимальный размах будет ±18 или +36 В. Диапазон напряжений питания может составлять и вовсе 6/+30 В. И – да, несимметричное питание также может использоваться, если учесть замечания следующих пунктов.
  • Входное синфазное напряжение (common-mode voltage range, СМ) обычно указывается относительно значений рабочих напряжений питания, как показано на рисунке 1. В этом случае в документации используется формульная запись, например, для гипотетического ОУ с синфазным напряжением на 2 В больше отрицательного напряжения питания и на 2,5 В меньше положительного напряжения будет использована примерно такая запись: от (V-)+2 В до (V+)-2,5 В.
  • Диапазон выходного напряжения (output-voltage range) или размах выходного напряжения (output-swing capability) так же, как и в предыдущем случае, указывается относительно значений питающих напряжений. В приведенном примере – от (V-)+1 В до (V+)-1,5 В.
Читайте также:  Стабилизаторы напряжения 24в 12в

На рисунках 1, 2 ,3 представлена буферная схема повторителя напряжения с коэффициентом усиления G = 1. Ключевая особенность схемы заключается в том, что выходное напряжение усилителя на рисунке 1 будет на 2 В больше, чем значение отрицательного напряжения питания, и на 2,5 В меньше, чем значение положительного напряжения питания. Так получается из-за ограниченного значения входного синфазного напряжения CM. Вам потребуется изменить коэффициент усиления, чтобы расширить диапазон выходных напряжений до максимума.

Схема на рисунке 1 является типовой для ОУ с биполярным питанием. Однако использовать однополярное питание также возможно, если не выходить за границы разрешенных диапазонов напряжений.

Рис. 1. Диапазоны входных и выходных напряжений типового ОУ с биполярным питанием (dual supply)

Рис. 1. Диапазоны входных и выходных напряжений типового ОУ с биполярным питанием (dual supply)

На рисунке 2 представлен так называемый ОУ с однополярным питанием (single-supply op amp). Для него допустимое синфазное напряжение может быть равно размаху напряжения питания, а зачастую даже выходит за его границы. Это позволяет использовать такой ОУ в широком перечне схем, которые работают с близкими к нулю потенциалами. ОУ, который не заявлен как усилитель с однополярным питанием, на самом деле также способен работать в однополярной конфигурации в некоторых схемах, однако реальный однополярный усилитель оказывается более универсальным.

Рис. 2. Диапазоны входных и выходных напряжений типового ОУ с однополярным питанием (single-supply op amp)

Рис. 2. Диапазоны входных и выходных напряжений типового ОУ с однополярным питанием (single-supply op amp)

В буферной схеме с коэффициентом усиления G = 1 такой ОУ обеспечивает потенциал выхода на 0,5 В выше уровня отрицательного напряжения питания за счет ограничения выходного диапазона и на 2,2 В ниже значения положительного напряжения питания за счет ограничения входного синфазного напряжения.

На рисунке 3 показан rail-to-rail ОУ. Вход rail-to-rail способен работать со входными напряжениями, равными или даже превосходящими уровни питающих напряжений. Выход типа rail-to-rail подразумевает, что выходные напряжения ОУ максимально близки к значениям напряжений питания, и обычно отличаются от них всего на 10…100 мВ. Некоторые ОУ обозначают только как усилители с выходом типа «rail-to-rail» и не упоминают о входных характеристиках, показанных на рисунке 3. Технологию «Rail-to-rail» чаще всего применяют для ОУ с однополярным питанием 5 В и ниже, чтобы максимально эффективно использовать ограниченный диапазон питающих напряжений.

Рис. 3. Диапазоны входных и выходных напряжений типового rail-to-rail ОУ

Рис. 3. Диапазоны входных и выходных напряжений типового rail-to-rail ОУ

Усилители rail-to-rail весьма привлекательны благодаря менее жестким ограничениям диапазонов используемых напряжений, однако они не всегда являются оптимальным выбором. Как правило, приходится искать компромиссы с учетом значений других параметров. Именно для этого и нужны разработчики аналоговых схем.

Список опубликованных глав

    1. Диапазоны входных и выходных рабочих напряжений ОУ. Устраняем путаницу
    2. Что нужно знать о входах rail-to-rail
    3. Работа с напряжениями близкими к земле: случай однополярного питания
    4. Напряжение смещения и коэффициент усиления с разомкнутым контуром обратной связи — двоюродные братья
    5. SPICE-моделирование напряжения смещения: как определить чувствительность схемы к напряжению смещения
    6. Где выводы подстройки? Некоторые особенности выводов коррекции напряжения смещения
    7. Входной импеданс против входного тока смещения
    8. Входной ток смещения КМОП- и JFET-усилителей
    9. Температурная зависимость входного тока смещения и случайный вопрос на засыпку
    10. Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
    11. Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
    12. Почему в схемах с ОУ возникают колебания: интуитивный взгляд на две наиболее частые причины
    13. Приручаем нестабильный ОУ
    14. Приручаем колебания: проблемы с емкостной нагрузкой
    15. SPICE-моделирование устойчивости ОУ
    16. Входная емкость: синфазная? дифференциальная? или…?
    17. Операционные усилители: с внутренней компенсацией и декомпенсированные
    18. Инвертирующий усилитель с G = -0,1: является ли он неустойчивым?
    19. Моделирование полосы усиления: базовая модель ОУ
    20. Ограничение скорости нарастания выходного сигнала ОУ
    21. Время установления: взгляд на форму сигнала
    22. Шум резисторов: обзор основных понятий
    23. Шумы операционного усилителя: неинвертирующая схема
    24. Шумы ОУ: как насчет резисторов обратной связи?
    25. 1/f-шум: фликкер-шум
    26. ОУ, стабилизированные прерыванием: действительно ли они шумные?
    27. Развязывающие конденсаторы: они нужны, но зачем?
    28. Неиспользуемые операционные усилители: что с ними делать?
    29. Защита входов от перенапряжений
    30. Могут ли дифференциальные ограничительные диоды на входе ОУ влиять на его работу?
    31. ОУ в режиме компаратора: допустимо ли это?
Читайте также:  Витамины для снятия нервного напряжения для детей

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ

Источник

Практические аспекты ОУ. Усиление синфазных сигналов

У реальных операционных усилителей по сравнению с «идеальной» моделью есть некоторые недостатки. Реальное устройство отличается от идеального дифференциального усилителя. Один минус один может не быть нулем. Эти недостатки могут привести к незначительным ошибкам в одних приложениях и недопустимым ошибкам в других приложениях. В некоторых случаях эти ошибки могут быть компенсированы. Иногда требуется более высокое качество и более дорогостоящее устройство.

Коэффициент усиления синфазных сигналов

Как указывалось ранее, идеальный дифференциальный усилитель усиливает только разность напряжений между двумя входами. Если два входа дифференциального усилителя замкнуты вместе (таким образом, обеспечивая нулевую разность потенциалов между ними), выходное напряжение не должно никак изменяться при любой величине напряжения, прикладываемого между этими двумя замкнутыми входами и землей:

Усиление синфазных сигналов. Vвых должно оставаться неизменным, независимо от Vсинф Усиление синфазных сигналов. Vвых должно оставаться неизменным, независимо от Vсинф

Напряжение, которое является общим для любого из входов и землей, в данном случае Vсинф, называется синфазным напряжением. Когда мы изменяем это синфазное напряжение, выходное напряжение идеального дифференциального усилителя должно быть абсолютно неизменным (не должно быть никаких изменений для любого произвольного синфазного напряжения на входе). Это приводит к коэффициенту усиления по напряжению в синфазном режиме, равному нулю.

. если изменение Vвых = 0 .

Операционный усилитель, будучи дифференциальным усилителем с высоким дифференциальным коэффициентом усиления, в идеале должен иметь нулевой коэффициент усиления в синфазном режиме. Однако в реальной жизни это достичь нелегко. Таким образом, синфазные напряжения будут неизменно влиять на выходное напряжение операционного усилителя.

Производительность реального операционного усилителя в этом отношении чаще всего измеряется с точки зрения отношения его дифференциального коэффициента усиления (насколько он усиливает разницу между двумя входными напряжениями) к его синфазному коэффициенту усиления (насколько он усиливает синфазное напряжение). Отношение первого к последнему называется коэффициентом ослабления синфазного сигнала (КОСС, англ. common-mode rejection ratio, CMRR):

Идеальный операционный усилитель с нулевым коэффициентом усиления в синфазном режиме будет иметь бесконечный CMRR. Реальные операционные усилители имеют высокие CMRR, у вездесущего 741 CMRR составляет около 70 дБ, что составляет немногим более 3000 в пересчете в разы.

Поскольку коэффициент ослабления синфазного сигнала у типового операционного усилителя настолько высок, синфазный коэффициент усиления обычно не вызывает большого беспокойства в схемах, где операционный усилитель используется с отрицательной обратной связью. Если синфазное входное напряжение схемы усилителя внезапно меняется, что приводит к соответствующему изменению выходного напряжения из-за синфазного коэффициента усиления, то изменение выходного напряжения будет быстро скорректировано работой отрицательной обратной связи и дифференциального коэффициента усиления (который намного больше, чем синфазный коэффициент усиления), чтобы вернуть систему в равновесие. Разумеется, на выходе можно было бы увидеть изменения, но они были бы намного меньше, чем вы могли ожидать.

Однако следует помнить о синфазном коэффициенте усиления в схемах дифференциальных усилителей на ОУ, таких как инструментальные (измерительные) усилители. Помимо корпуса операционного усилителя и чрезвычайно высокого дифференциального коэффициента усиления, мы можем обнаружить, что синфазный коэффициент усиления вызывается разбалансом номиналов резисторов. Чтобы продемонстрировать это, мы проведем SPICE анализ инструментального (измерительного) усилителя с закороченными вместе входами (без дифференциального напряжения), подавая синфазное напряжение, чтобы увидеть, что произойдет. Сначала мы проведем анализ, показывающий выходное напряжение идеально сбалансированной схемы. Мы ожидаем увидеть отсутствие изменений в выходном напряжении при изменениях синфазного входного напряжения:

Анализ работы инструментального усилителя в синфазном режиме Анализ работы инструментального усилителя в синфазном режиме

Читайте также:  Стабилизаторы напряжения fdr 3000va

Как вы можете видеть, выходное напряжение v(9) практически не изменяется при изменениях входного напряжения v(1) от 0 до 10 вольт.

Помимо очень небольших отклонений (фактически из-за причуд SPICE, а не реального поведения схемы), выходное напряжение остается стабильным там, где и должно быть: при 0 вольт с нулевым дифференциальным входным напряжением. Однако давайте введем в схему резисторный дисбаланс, увеличив R5 с 10000 Ом до 10500 Ом, и посмотрим, что произойдет (список соединений для краткости был пропущен – единственное, что изменилось, это значение R5):

На этот раз мы видим значительное изменение (от 0 до 0,2439 вольта) выходного напряжения при изменении синфазного входного напряжения от 0 до 10 вольт, как и в прошлом эксперименте.

Разность входных напряжений по-прежнему равна нулю, но выходное напряжение значительно изменяется при изменении синфазного напряжения. Это свидетельствует о синфазном коэффициенте усиления, чего мы пытаемся избежать. Более того, этот синфазный коэффициент усиления создан нами и не имеет ничего общего с несовершенством самих операционных усилителей. Благодаря значительно уменьшенному дифференциальному коэффициенту усиления (фактически равному 3 в этой конкретной схеме) и отсутствию отрицательной обратной связи вне схемы, этот синфазный коэффициент усиления будет оставаться без контроля в схеме тракта измерительного сигнала.

Существует только один способ скорректировать этот синфазный коэффициент усиления, и он заключается в балансе значений всех резисторов. При проектировании измерительного усилителя из дискретных компонентов (а не при покупке в корпусе интегральной микросхемы) целесообразно обеспечить некоторые средства для точной подстройки, по меньшей мере, одного из четырех резисторов, подключенных к оконечному операционному усилителю, чтобы иметь возможность «отсечь/исключить» любой такой синфазный коэффициент усиления. Предоставление средств для «подстройки» резисторной цепи также имеет дополнительные преимущества. Предположим, что значения всех резисторов точно такие, какими они должны быть, но синфазный коэффициент усиления присутствует из-за несовершенства одного из операционных усилителей. При обеспечении подстройки сопротивление можно подкорректировать, чтобы компенсировать это нежелательное усиление.

Одной из особенностей некоторых моделей ОУ является защелкивание выхода, обычно вызванное синфазным входным напряжением, превышающим допустимые пределы. Если синфазное напряжение выходит за пределы, установленные производителем, выход может внезапно «защелкнуться» в высоком режиме (насыщение при полном выходном напряжении). В операционных усилителях с входами на полевых транзисторах защелкивание может произойти, если синфазное входное напряжение подходит слишком близко к отрицательному напряжению шины питания. Например, на операционном усилителе TL082 это происходит, когда синфазное входное напряжение находится в пределах около 0,7 вольта от отрицательного напряжения на шине питания. Такая ситуация может легко возникнуть в схеме с одиночным источником питания, где отрицательная шина питания является землей (0 вольт), а входной сигнал свободно колеблется до 0 вольт.

Защелкивание также может быть вызвано синфазным входным напряжением, превышающим напряжение на шине питания, отрицательной или положительной. Как правило, вы должны не позволять входному напряжению никогда ни превышать напряжение на положительной шине источника питания, ни опускаться ниже напряжения на отрицательной шине источника питания, даже если рассматриваемый операционный усилитель имеет защиту от защелкивания (такие модели операционных усилителей как 741 и 1458). По крайней мере, поведение операционного усилителя может стать непредсказуемым. В худшем случае, тип защелкивания, вызванный входными напряжениями, превышающими напряжения источников питания, может быть разрушительным для операционного усилителя.

Хотя эту проблему можно легко избежать, ее вероятность больше, чем вы думаете. Рассмотрим случай со схемой на операционном усилителе во время включения питания. Если схема получает полное напряжение входного сигнала до того, как ее собственный источник питания успел зарядить конденсаторы фильтра, синфазное входное напряжение может легко превысить напряжение на шине питания. Если операционный усилитель получает напряжение сигнала от схемы, питающейся от другого источника питания, а его собственный источник питания выходит из строя, напряжение(я) сигнала может превышать напряжение на шине питания в течение неопределенного количества времени!

Источник

Adblock
detector