Силовые трансформаторы устройство назначение регулирование напряжения

Устройство силовых трансформаторов

Силовым трансформатором называется электромагнитное устройство, преобразующее переменный ток одного напряжения в переменный ток другого более высокого или более низкого напряжения при неизменной частоте. Трансформаторы выпускаются стандартных мощностей: 10, 16, 25, 40 и 63 кВ•А с увеличением каждого из этих значений в 10, 100, 1000 и 10000 раз.

Трансформаторы разделяются по способу охлаждения на масляные, сухие, с дутьевым и водомасляным охлаждением; по исполнению — для внутренней и наружной установок, герметичные и уплотненные; по числу фаз — одно- и трехфазные; по числу обмоток — двух- и трехобмоточные; по способу регулирования напряжения — под нагрузкой и при отключенном напряжении.

Сухие (без масла) трансформаторы выпускаются мощностью до 1600 кВ А и напряжением до 15, 75 кВ с естественным охлаждением. Достоинством сухих трансформаторов является их пожаробезопасность.

Для масляных трансформаторов с естественным масляным охлаждением, используемых в закрытых помещениях, обеспечивается непрерывная вентиляция для отвода нагретого и доступа холодного воздуха.

Основными параметрами трансформаторов являются: номинальные напряжения обмоток, номинальная мощность, номинальный ток и номинальная нагрузка обмоток.

Обмотки первичного и вторичного напряжения трехфазных двухобмоточных трансформаторов соединяют по схемам звезда-звезда или звезда-треугольник. В зависимости от направления намотки обмотки, последовательности соединений фазных обмоток и чередования фаз при соединении в звезду или треугольник можно получить ту или иную группу соединений. Наиболее распространенные схемы соединений обмоток трансформаторов приведены на рис. 115.

Схемы соединений обмоток двухобмоточных трансформаторов

Рис. 115. Схемы соединений обмоток двухобмоточных трансформаторов:
а — звезда-звезда с выведенной нейтралью; б — звезда-треугольник; в — звезда с выведенной нейтралью-треугольник.

Силовые трансформаторы имеют обозначения, состоящие из букв и цифр. Первая буква указывает число фаз: О — однофазный и Т — трехфазный. Вторая буква указывает вид охлаждения: М — масляное естественное; Д — масляное с дутьевым охлаждением и естественной циркуляцией масла; ДЦ — масляное с дутьевым охлаждением и принудительной циркуляцией масла; MB — масляно-водяное охлаждение масла с естественной циркуляцией; Ц — масляно-водяное охлаждение с принудительной циркуляцией масла; С, СЗ, СТ — естественное воздушное охлаждение соответственно при открытом, закрытом и герметизированном исполнениях; у трансформаторов с заполнением негорючих диэлектриков вид охлаждения обозначается буквами Н — естественное охлаждение негорючим жидким диэлектриком и НД — охлаждение негорючим жидким диэлектриком с принудительным дутьем.

Третья буква указывает число обмоток (Т — трехобмоточный), четвертая — выполнение одной из обмоток с устройством регулирования напряжения под нагрузкой — РПН и обозначается буквой Н.

Мощность и высшее напряжение трансформатора указываются в обозначениях дробью. Числитель дроби указывает номинальную мощность в кВ•А, а знаменатель — высшее напряжение обмоток (ВН) в кВ.

Например, трансформатор типа ТДТН-15000/35 — трехфазный, с дутьевым охлаждением, трехобмоточный, с регулировкой напряжения под нагрузкой, мощностью 15000 кВ•А и напряжением ВН — 35 кВ.

Трехфазный силовой трансформатор мощностью 1000 кВ с масляным охлаждением

Рис. 116. Трехфазный силовой трансформатор мощностью 1000 кВ•А с масляным охлаждением:
1 — бак; 2, 5 — нижняя и верхняя ярмовые балки; 3 — обмотка ВН; 4 — регулировочные отводы; 6 — магнитопровод; 7 —деревянные планки; 8 — отвод от обмотки ВН; 9 — переключатель; 10 — подъемная шпилька; 11 — крышка; 12 — подъемное кольцо; 13 — ввод ВН; 14 — ввод НН; 15 — выхлопная труба; 16 — расширитель; 17 — маслоуказатель; 18 — газовое реле; 19 — циркуляционные трубы; 20 — маслоспускной кран; 21 — катки.

Основой конструкции силового двухобмоточного трансформатора (рис. 116) является его активная часть, состоящая из магнитопровода 6 с расположенными на нем обмотками низшего (НН) и высшего 3 (ВН) напряжений, отводов 8 и переключателя напряжения 9. Магнитопровод 6 трансформатора набирается из листов специальной электротехнической стали толщиной 0,35 или 0,5 мм. Отдельные части магнитопровода собирают в жесткую конструкцию из трех вертикальных стержней с верхним 5 и нижним 2 ярмами с помощью стяжных шпилек и прессующих ярмовых балок, образуя замкнутый контур. Между собой листы стали изолированы лаком или теплостойким покрытием на основе жидкого стекла. Ярмовыми балками из швеллеров листы стали магнитопровода плотно опрессовывают при помощи шпилек. Ярмовые балки и шпильки изолируют от активной стали магнитопровода. Активная часть трансформатора помещается в металлический бак, который предохраняет обмотки от повреждений и является резервуаром для трансформаторного масла.

Обмотки трансформаторов изготовляют из электротехнической меди или алюминия прямоугольного или круглого сечения. Чаще всего применяют цилиндрические и винтовые обмотки. Их отделяют от сердечника, друг от друга и от стенок бака цилиндрами из изолирующего материала (бакелита).

Цилиндрические обмотки выполняют из круглых или прямоугольных проводов с изоляцией из хлопчатобумажной пряжи и наматывают в один слой (однослойная), в два слоя (двухслойная) или несколько слоев (многослойная) одним или несколькими проводами по винтовой линии (рис. 117).

Конструкции цилиндрических обмоток силовых трансформаторов

Рис. 117. Однослойная (а), двухслойная (б) и многослойная (в) конструкции цилиндрических обмоток силовых трансформаторов:
1 — выравнивающие кольца; 2 — коробочка из электрокартона; 3 — конец первого слоя обмотки; 4 — планка из бука; 5 — отводы для регулирования напряжения.

Начала и концы обмоток располагают на их противоположных торцах. Однослойные и двухслойные обмотки применяются в качестве обмоток низкого напряжения, а многослойные — в качестве обмоток ВН в трансформаторах мощностью до 630 кВ•А.

Цилиндрические многослойные обмотки изготовляют из круглого провода, намотанного на бумажно-бакелитовый цилиндр, плотно укладывая витки слоями и прокладывая между ними листы кабельной бумаги (рис. 117, в). При большом числе слоев между ними укладывают планки из древесины твердых пород или из нескольких слоев полосок склеенного электрокартона, образуя вертикальные каналы. Такая конструкция обеспечивает хороший отвод теплоты для охлаждения обмотки. Для увеличения механической прочности обмотку обматывают хлопчатобумажной лентой, пропитывают глифталевым лаком и запекают при температуре около 100 С.

В более мощных трансформаторах применяют непрерывные обмотки из плоских проводов без разрывов и паек при переходе из одной катушки в другую. Эти обмотки наматываются на рейки, уложенные на бумажно-бакелитовом цилиндре и образующие в своих промежутках вертикальные каналы охлаждения, а горизонтальные каналы создаются с помощью пакетов из электротехнического картона, собранных на проваренных в масле деревянных планках. Они применяются в силовых трансформаторах в качестве обмоток низшего и высшего напряжения.

Баки силовых трансформаторов изготовляют из листовой стали. Они могут быть овальной или прямоугольной форм. Баки изготовляют гладкими, а для лучшего охлаждения масла — ребристыми, трубчатыми и с радиаторами. Баки устанавливают на катки для перемещения трансформаторов в пределах помещения подстанции. Сверху бак закрывается съемной крышкой, на которой размещают вводные изоляторы, термометр, пробивной предохранитель, переключатель отводов обмотки для регулирования напряжения, расширитель, газовое реле и предохранительную трубу.

Для присоединения обмоток к токопроводящим шинам применяют фарфоровые изоляторы, через которые проходят медные стержни.

Изоляционное масло в трансформаторе используется в качестве изолирующей и охлаждающей среды. В процессе эксплуатации трансформатора масло стареет и теряет свои первоначальные изоляционные свойства за счет воздействия на него кислорода, влаги, грязи и высокой температуры.

Для измерения температуры верхних слоев масла в трансформаторах мощностью до 1000 кВ•А применяют стеклянный термометр с шкалой от -20 до +100 ºС, а в трансформаторах свыше 1000 кВ•А — термометрический сигнализатор ТС-100, который служит для контроля температуры масла и для сигнализации или отключения трансформатора при превышении температуры свыше допустимого предела.

В тех случаях, когда вторичные сети имеют изолированную от земли нейтраль, для безопасной работы применяется пробивной предохранитель, имеющий воздушные промежутки. В аварийном режиме воздушные промежутки пробиваются и обмотка низкого напряжения заземляется.

Переключатели отводов обмоток для регулирования напряжения

Рис. 118. Переключатели ТПСУ-9-120/11 (а), ТПСУ-9-120/10 (б) отводов обмоток для регулирования напряжения силовых трансформаторов и их схема (в):
1 — сегментный контакт; 2 — коленчатый вал; 3, 4 — бумажно-бакелитовая трубка; 5 — резиновое уплотнение; 6 — крышка трансформатора; 7 — фланец; 8 — стопорный болт; 9 — колпак; 10 — указатель положения; 11 — неподвижный контакт.

Для поддержания необходимого уровня напряжения потребителей у трансформаторов с регулировкой напряжения (рис. 119, а и б) проводят изменение коэффициента трансформации с помощью переключателей ответвлений обмоток (рис. 118). Регулирование напряжения проводится в пределах ±5 %. Трансформаторы с РПН (регулирование под нагрузкой) имеют большое число ступеней и более широкой диапазон регулирования (до 20%).

Схемы трансформаторов с РПН

Рис. 119. Схемы трансформаторов с РПН без реверсирования (а) и с реверсированием (б):
1 — основная обмотка; 2 — регулировочная обмотка; 3 — устройство переключения; 4 — переключатель (реверсор).

Часть обмотки ВН с ответвлениями называется регулировочной обмоткой. Расширение регулировочного диапазона без увеличения числа отводов достигается применением схем с реверсированием (рис. 119, б). Переключатель-реверсор 4 позволяет присоединить регулировочную обмотку 2 к основной 1 согласно или встречно, благодаря чему диапазон регулирования удваивается. Устройство 3 PПН обычно включается со стороны нейтрали X. что позволяет выполнять их с пониженной изоляцией.

Устройство РПН состоит из контактора, разрывающего и замыкающего цепь рабочею тока; избирателя (переключателя), контакты которого размыкают и замыкают электрическую цепь без тока; реактора или резистора; приводного механизма (рис. 120).

Последовательность работы переключающих устройств с РПН

Рис. 120. Последовательность работы переключающих устройств с РПН:
Р — реактор; К1, К2 — контакторы; РО — регулировочная обмотка; П — переключатель.

Очередность в работе контакторов и избирателей обеспечивается приводным механизмом с реверсивным пускателем. В нормальном режиме работы через реактор Р проходит ток нагрузки, а в процессе переключения ответвлений — реактор ограничивает значение тока Iцирк. Контактор, в котором при переключении возникает дуга на контактах, помещают в отдельном масляном баке. Управление устройством РПН осуществляется автоматически от реле напряжения или дистанционно диспетчером.

На маслоуказателе расширителя нанесены три контрольные черты, соответствующие уровню масла при температуре -45, +15, +40.

Расположение на крышке трансформатора расширителя, газового реле и предохранительной трубы

Рис. 121. Расположение на крышке трансформатора расширителя, газового реле и предохранительной трубы:
1 — расширитель; 2 — газовое реле; 3 — предохранительная труба.

Газовое реле (рис. 121) служит для сигнализации или отключения трансформатора в случаях внутренних повреждений. Разлагающиеся под действием высоких температур масло, дерево или изоляция выделяют газы, которые воздействуют на поплавки с контактами газового реле. В случае отказа работы газового реле в трансформаторе создается повышенное давление, которое разрушает мембрану предохранительной трубы и выбрасывает газы и масло наружу, предотвращая опасность взрыва бака. Мембрана трубы изготовляется из стекла или фольги.

Схема автотрансформатора

Рис. 122. Схема автотрансформатора:
а — однофазного; б — трехфазного.

Автотрансформаторы представляют собой трансформаторы, у которых обмотка низшего напряжения является частью обмотки высшего напряжения (рис. 122). Автотрансформаторы широко используются для связи электрических сетей напряжением 150/121, 230/121. 350/121, 500/121 и 750/330 кВ. Они выполняются трехфазными или и виде групп, состоящих из трех однофазных. Автотрансформаторы низкого напряжения широко применяются для регулирования напряжения в цепях управления, автоматики, а также при испытаниях оборудования и сетей.

В мощных автотрансформаторах напряжение регулируют переключателем, как и в обычных трансформаторах.

Источник

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности

Между генераторами электроэнергии и потребителями может быть десятки, а то и сотни километров. Для минимизации потерь при транспортировке применяется специальная технология, суть которой заключается в повышении напряжения, передачи его посредством ЛЭП и понижении до уровня потребительской сети. Последний этап преобразования осуществляется на подстанциях, оборудованными силовыми трансформаторами (далее по тексту СТ). В данной публикации мы расскажем, что представляют собой эти устройства, их основные конструктивные элементы и особенности.

Что такое силовой трансформатор и его назначение

Это аппарат, преобразующий амплитуду переменного напряжения, оставляя неизменным его частоту. В основу работы такого устройства положен принцип электромагнитной индукции. Мы не будем отвлекаться на его описание, всю подробную информацию можно найти на страницах нашего сайта.

Основная сфера применения СТ связана с передачей и распределением электроэнергии, упрощенно это представлено на рисунке ниже.

Схема передачи электроэнергии

Схема передачи электроэнергии

Как видно из рисунка, в цепи между генератором и потребителем может быть установлено несколько СТ. Первый повышает напряжение до 110 кВ (чем оно выше, темь меньше потерь при передаче на дальние расстояния) и подает его на ЛЭП. На выходе линии установлен второй СТ на районной подстанции, откуда производится передача по подземному кабелю на трансформаторный пункт, откуда запитываются конечные потребители.

Трансформаторный пункт

Трансформаторный пункт

Принятые классификации

Учитывая немалый вес и размеры СТ, чтобы упростить ряд работ, связанных с обслуживанием, транспортировкой и планированием, данные устройства принято делить на габаритные группы. Ниже представлена таблица, где показано соответствие.

Таблица габаритов СТ:

Помимо габаритного распределения, СТ также классифицируют по следующим показателям:

  • число фаз (как правило, подстанции оборудованы трехфазными преобразователями);
  • количество обмоток (две или три);
  • функциональное назначение (понижение или повышение амплитуды);
  • исполнение (установка внутри помещения или снаружи);
  • система отвода тепла (воздушная или масляная).

Конструктивные особенности

Несмотря на разнообразие видов СТ их конструкция неизменно включает следующие обязательные элементы:

  • выводы катушек высокого и низкого напряжения (ВН и НН), их принято называть силовыми вводами;
  • систему отвода тепла;
  • устройства, позволяющие регулировать рабочее напряжение;
  • дополнительное оборудование, для контроля работы и обслуживания аппарата.

На рисунке ниже представлена типовая конструкция СТ с масляной системой отвода тепла.

Конструкция силового трансформатора с масляным охлаждением

Конструкция силового трансформатора с масляным охлаждением

Обозначения:

  • А – бак расширителя, служит для выравнивания уровня масла при изменении его объема вследствие температурных колебаний.
  • В – силовой ввод для ВН.
  • С — ввод для НН.
  • D – переключатель рабочего напряжения.
  • E – радиатор, представляет собой трубы, по которым циркулирует масло.
  • F – корпус, также играет роль бака для масла.
  • G и H – катушки ВН и НН.
  • I – магнитопроводный сердечник.

Теперь рассмотрим подробно назначение основных конструктивных элементов.

Назначение силовых вводов

Данный элемент конструкции необходим для подключения питания и нагрузки к СТ. Их расположение может быт как внутренним (закрытые клеммные колодки) так и внешним. Обратим внимание, что первый вариант расположение используется только в СТ с воздушной системой отвода тепла.

Обязательно наличие изоляции, между вводом и корпусом, она может быть маслобарьерной, элегазовой, конденсаторной-проходной или же выполнена из материалов, не проводящих электричество (фарфор, полимеры и т.д.).

Фарфоровые изоляторы на вводах силового трансформатора

Рис. 4. Фарфоровые изоляторы на вводах силового трансформатора

Система отвода тепла

В процессе преобразования электроэнергии часть потерь выделяется в виде тепла, поэтому система его отвода неизменно присутствует в любом СТ. Мощные аппараты снабжены для этого специальной двухконтурной системой, охлаждение масла в которой производится следующими способами:

Вентиляторы принудительной системы охлаждения СТ

  • Посредством радиаторов (см. Е на рис. 4), обеспечивающих отвод тепла во вторичную или внешнюю среду.
  • Бак-корпус с гофрированной поверхностью (применяется в маломощных аппаратах).
  • Установка вентиляционного оборудования. Такое решение позволяет увеличить производительность на четверть. Вентиляторы принудительной системы охлаждения СТ
  • Дополнительные системы водяного охлаждения. Это один из самых простых и эффективных способов отвода тепла.
  • Применение специальных насосов, обеспечивающих циркуляцию масла в системе отвода тепла.

Устройства управления рабочим напряжением

В некоторых случаях возникает необходимость повысить или понизить напряжение нагрузки СТ, для этой цели в большинстве конструкций предусмотрено специальный переключатель. По сути, он меняет коэффициент трансформации путем переключения на большее или меньшее число витков в катушках.

Как правило, такие манипуляции выполняются при снятой нагрузке, но существуют устройства позволяющие изменять КТ без отключения потребителей.

Виды дополнительного оборудования

Для обеспечения стабильной работы и обслуживания СТ их конструкция может включать следующие устройства, именуемые навесным или дополнительным оборудованием:

Индикатор температуры масла

  • Реле давления газа, представляет собой защитную систему. Если СТ переходит в нештатный режим работы, то в результате большого выделения тепла происходит разложение масла. Данный процесс сопровождается выделением газа. При его быстром образовании срабатывает защита, отключающая аппарат от питания и нагрузки. Если процесс газообразования протекает медленно, включается оповещение.
  • Термоиндикаторы, показывают нагрев масла в различных узлах системы отвода тепла. Индикатор температуры масла
  • Влагопоглотители. Применяются в негерметичных масляных системах отвода тепла, препятствуют образованию водяного конденсата.
  • Системы маслорегенерации.
  • Датчики давления, если оно превышает определенный порог, автоматически включается устройство сброса для нормализации.
  • Датчик уровня заполнения масла в системе отвода тепла.

Принятая маркировка

Буквенно-цифровые обозначения СТ производится в соответствии с представленным ниже рисунком.

Маркировка силового трансформатора

Маркировка силового трансформатора

Обозначения:

  1. Указывается тип аппарата. Возможны варианты «А», «Л», «Е» или отсутствие символа, что соответствует автотрансформатору, линейному или печному устройству. Отсутствие символа указывает на обычный СТ.
  2. «О» или «Т», соответствует однофазному или трехфазному аппарату.
  3. Используемая вариант отвода тепла (для масляных систем), возможные варианты:
  • М – принудительные системы не используются.
  • Д – производится принудительный обдув.
  • ДЦ – производится принудительный обдув с ненаправленной циркуляцией.
  • НЦ – водяно-масляное охлаждение с направленной циркуляцией.
  • Ц – водно-масляное охлаждение с ненаправленной циркуляцией.
  1. Указание мощности в кВ*А.
  2. Допустимый уровень ВН (кВ).
  3. Вариант исполнения (наружное или внутреннее размещение, особые климатические условия и т.д.)

Особенности обслуживания

СТ являются важными звеньями в схемах передачи электроэнергии, от них зависит работа всей системы. Для обеспечения надежности и бесперебойной работы этих устройств необходимо регулярное обслуживание подготовленными специалистами, имеющих соответствующий уровень допуска.

Если оборудование используется там, где предусмотрено наличие штатного дежурного персонала, то его обязанности входит проведение регулярных осмотров, при которых снимаются показания приборов, характеризующих текущее состояние СТ. Регламентом предписывается контролировать:

  • Показания уровня масла в теплоотводных системах.
  • Состояние влагопоглотителей.
  • Работу системы маслорегенерации.
  • Состояние внешнего корпуса аппарата и основных его узлов.

При обнаружении отклонения от нормы, подтеков, повреждений или других признаков, свидетельствующих о нештатной работе контролируемых аппаратов, персонал должен принять предписанные инструкцией меры.

Для автономного оборудования, работа которого не требует наличия дежурного персонала, положено проводить технический осмотр ежемесячно. Что касается трансформаторных пунктов, то для них эта норма снижена до полгода.

При обнаружении недостатка масла в системе отвода тепла следует произвести доливку, а в случае несоответствия нормам – полную замену. Определить необходимость замены масла, можно по его цвету.

Свидетельством нештатного режима работы оборудования может быть повышение температуры в помещении подстанции. При обнаружении прямых или косвенных свидетельств анормального функционирования СТ, предписывается проводить внеплановый осмотр с проверкой общего состояния элементов защитного оборудования.

Согласно правилам эксплуатации необходимо раз в год брать пробу масла для лабораторного анализа. Это же действие предписывается в случае капитального ремонта.

Помимо этого при обслуживании периодически приходится производить подстройку рабочего напряжения. Необходимость этого связана с тем, что со временем латунные и медные контакты покрываются оксидной пленкой, что приводит к увеличению переходного сопротивления. Что бы не допустить этого, раз в полгода с СТ снимается нагрузка и питание, после чего производится переключение регулятора напряжения во всем позициям. Процедуру рекомендуется повторить несколько раз, перед тем как вернуть исходное положение.

Источник

Силовые трансформаторы — устройство и принцип действия

При транспортировке электроэнергии на большие расстояния для снижения потерь используется принцип трансформации. Для этого электричество, вырабатываемое генераторами, поступает на трансформаторную подстанцию. На ней повышается амплитуда напряжения, поступающего в линию электропередачи.

Второй конец ЛЭП подключен на ввод удаленной подстанции. На ней для распределения электричества между потребителями осуществляется понижение напряжения.

На обеих подстанциях трансформацией электроэнергии больших мощностей занимаются специальные силовые устройства:

Они имеют много общих признаков и характеристик, но отличаются определенными принципами работы. Эта статья описывает только первые конструкции, у которых передача электроэнергии между разделенными обмотками происходит за счет электромагнитной индукции. При этом изменяющиеся по амплитуде гармоники тока и напряжения сохраняют частоту колебаний.

Силовые трансформаторы в энергетике устанавливаются на заранее подготовленные стационарные площадки с прочными фундаментами. Для размещения на грунте могут монтироваться рельсы и катки.

Общий вид одного из многочисленных типов силовых трансформаторов, работающего с системами напряжений 110/10 кВ и обладающего величиной полной мощности 10 МВА, показан на фотографии ниже.

Общий вид силового трансформатора

Отдельные ярко выраженные элементы его конструкции снабжены подписями. Более подробно устройство основных частей и их взаимное расположение демонстрирует чертеж.

Конструкция слового траснформатора

Электрическое оборудование трансформатора размещается внутри металлического корпуса, изготовленного в форме герметичного бака с крышкой. Он заполнен специальным сортом трансформаторного масла, которое обладает высокими диэлектрическими свойствами и, одновременно, используется для отвода тепла от деталей, подвергаемых большим токовым нагрузкам.

Гидравлическая схема трансформатора

Упрощенно состав и взаимодействие ее основных элементов показано на картинке.

Гидравлическая схема силового трансформатора

Для залива/слива масла используются специальные задвижки и вкручивающаяся пробка, а запорный вентиль, расположенный внизу бака, предназначен для отбора проб масла и последующего проведения его химического анализа.

В силовом трансформаторе образовано два контура циркуляции масла:

Первый контур представлен радиатором, состоящим из верхнего и нижнего коллекторов, соединенных системой металлических трубок. Через них проходит нагретое масло, которое, находясь в магистралях охладителя, остывает и возвращается в бак.

Внутри бака циркуляция масла может производиться:

принудительно за счет создания давления в системе насосами.

Часто поверхность бака увеличивается за счет создания гофр — специальных металлических пластин, улучшающих теплообмен между маслом и окружающей атмосферой.

Забор тепла от радиатора в атмосферу может выполняться обдувом системой вентиляторов или без них за счет свободной конвекции воздуха. Принудительный обдув эффективно повышает теплосъем с оборудования, но увеличивает затраты энергии на эксплуатацию системы. Они могут снизить нагрузочную характеристику трансформатора до 25%.

Тепловая энергия, выделяемая современными трансформаторами повышенной мощности, достигает огромных величин. Об ее размере может служить тот факт, что сейчас за ее счет стали реализовывать проекты отопления промышленных зданий, расположенных рядом с постоянно работающими трансформаторами. В них поддерживаются оптимальные условия работы оборудования даже в зимнее время.

Контроль уровня масла в трансформаторе

Масло постоянно циркулирует внутри бака. Его температура зависит от целого комплекса воздействующих факторов. Поэтому объем его все время изменяется, но поддерживается в определенных границах. Для компенсации объемных отклонений масла служит расширительный бачок. В нем удобно наблюдать текущий уровень.

Для этого используется маслоуказатель. Наиболее простые устройства изготавливают по схеме сообщающихся сосудов с прозрачной стенкой, заранее проградуированной в единицах объема.

Подключения такого маслоуказателя параллельно расширительному баку вполне достаточно для контроля эксплуатационных характеристик. На практике встречаются и другие, отличные от этого принципа работы маслоуказатели.

Защита от проникновения влаги

Поскольку верхняя часть расширительного бака контактирует с атмосферой, то в ней устанавливают осушитель воздуха, препятствующий проникновению влаги внутрь масла и снижению его диэлектрических свойств.

Защита от внутренних повреждений

Важным элементом масляной системы является газовое реле. Его монтируют внутри трубопровода, соединяющего основной бак трансформатора с расширительным. За счет этого все газы, выделяемые при нагреве из масла и органической изоляции, проходят через емкость с чувствительным элементом газового реле.

Типы некоторых газовых реле

Этот датчик отстроен от работы на очень маленькое, допустимое газообразование, но срабатывает при его увеличении в два этапа:

1. на выдачу светового/звукового предупредительного сигнала обслуживающему персоналу о возникновении неисправности при достижении уставки первой величины;

2. на отключение силовых автоматических выключателей со всех сторон трансформатора для снятия напряжения при бурном газообразовании, свидетельствующем о начале мощных процессов разложения масла и органической изоляции, начинающихся при коротких замыканиях внутри бака.

Дополнительная функция газового реле — контроль уровня масла в баке трансформатора. При снижении его до критической величины газовая защита может отработать в зависимости от настройки:

только на сигнал;

на отключение с выдачей сигнала.

Защита от аварийного повышения давления внутри бака

На крышке трансформатора так монтируется выхлопная труба, чтобы ее нижний конец сообщался с емкостью бака, а масло поступало внутрь до уровня в расширителе. Верхняя часть трубы возвышается над расширителем и отводится в сторону, немного загибается вниз. Ее конец герметично закрыт стеклянной предохранительной мембраной, которая разрушается при аварийном повышении давления из-за возникновения нерасчетного нагрева.

Другая конструкция подобной защиты основана на монтаже клапанных элементов, которые открываются при повышении давления и закрываются при его сбросе.

Еще один вид — сильфонная защита. Она основана на быстром сжатии сильфона при резком повышении газа. В результате сбивается защелка, удерживающая боек, который в нормальном положении находится под воздействием сжатой пружины. Освобожденный боек разбивает стеклянную мембрану и тем самым осуществляет сброс давления.

Электрическая схема силового трансформатора

Внутри корпуса бака размещаются:

остов с верхней и нижней балкой;

обмотки высокого и низкого напряжения;

регулировочные ответвления обмоток;

низковольтный и высоковольтный отводы

нижняя часть вводов высокого и низкого напряжения.

Остов вместе с балками служит для механического закрепления всех составных деталей.

Конструкция внутренних элементов Магнитопровод служит для снижения потерь магнитному потоку, проходящему через обмотки. Его изготавливают из сортов электротехнической стали шихтованным способом.

Виды обмоток силовых трансформаторов

По обмоткам фаз трансформатора протекает ток нагрузки. Материалами для их изготовления выбирают металлы: медь или алюминий с круглым либо прямоугольным сечением. Для изоляции витков используют специальные сорта кабельной бумаги или хлопчатобумажную пряжу.

Концентрические намотанные обмотки выполняют в виде цилиндров, расположенных один в другом. Для стороны высокого напряжения (ВН) создается непрерывная или многослойная обмотка, а для низкого (НН) — винтовая и цилиндрическая.

Обмотку НН располагают ближе к стержню: так легче выполнить слой для ее изоляции. Затем на нее устанавливают специальный цилиндр, обеспечивающий изоляцию между сторонами высокого и низкого напряжения, а на него монтируют обмотку ВН.

Описанный способ монтажа показан на левой части нижерасположенной картинки с концентрическим размещением обмоток на стержне трансформатора.

Схемы расположения обмоток

С правой стороны картинки показан способ размещения чередующихся обмоток, разделяемых изоляционным слоем.

Для повышения электрической и механической прочности изоляции обмоток их поверхность пропитывают специальным сортом глифталевого лака.

Для подключения обмоток одной стороны напряжения между собой используют схемы:

При этом концы каждой обмотки маркируют буквами латинского алфавита, как показано в таблице.

Тип трансформатора Сторона обмотки
Низкого напряжения Среднего напряжения Высокого напряжения
начало конец нейтраль начало конец нейтраль начало конец нейтраль
Однофазный а X Ат Хт А X
Две обмотки три фазы a Х 0 А X 0
b Y B Y
с г C Z
Три обмотки три фазы a X Ат Хт А X
b Y 0 Y т 0 B Y 0
c Z Хт C Z

Выводы от обмоток подключают к соответствующим токоотводам, которые монтируются на шпильки проходных изоляторов, расположенных на крышке бака трансформатора.

Для осуществления возможности регулировки величины выходного напряжения на обмотках делают ответвления. Один из вариантов выполнения регулировочных ответвлений показан на схеме.

Расположение регулировочных ответвлений

Систему регулирования напряжения создают с возможностью изменения номинальной величины в пределах ±5%. Для этого выполняют пять ступеней по 2,5% в каждой.

У мощных силовых трансформаторов регулирование обычно создают на обмотке высокого напряжения. Это упрощает конструкцию переключателя ответвлений и позволяет повышать точность выходных характеристик за счет большего числа витков на этой стороне.

Для многослойных цилиндрических обмоток регулировочные ответвления выполняют на внешнем стороне слоя у окончания обмотки и компонуют их симметрично на одинаковой высоте относительно ярма.

У отдельных конструкций трансформаторов ответвления делают в средней части. При использовании оборотной схемы одна половина обмотки выполняется с правой намоткой, а вторая — с левой.

Для коммутации ответвлений используют трехфазный переключатель.

Переключатель ответвлений

У него есть система неподвижных контактов, которые подключены к ответвлениям обмоток, и подвижных, осуществляющих коммутацию схемы за счет создания различных электрических цепей с неподвижными контактами.

Если ответвления сделаны около нулевой точки, то одним переключателем управляют работой сразу всех трех фаз. Это можно делать потому, что между отдельными частями переключателя напряжение не превышает 10% линейной величины.

Когда ответвления выполнены в средней части обмотки, то для каждой фазы используется свой, индивидуальный переключатель.

Способы регулирования выходного напряжения

Существуют два типа переключателей, позволяющие изменять количество витков на каждой обмотке:

1. с отключением нагрузки;

2. под нагрузкой.

Первый способ требует больше времени на выполнение и не пользуется популярностью.

Переключения под нагрузкой обеспечивают более легкое управление электрическими сетями за счет беспрерывного электроснабжения подключенных потребителей. Но, для его выполнения необходимо иметь усложненную конструкцию переключателя, который наделяется дополнительными функциями:

осуществление переходов между ответвлениями без разрыва токов нагрузки за счет подключения двух соседних контактов на момент переключения;

ограничение тока короткого замыкания внутри обмотки между подключаемыми ответвлениями во время их одновременного включения.

Принцип работы силового трансформатора

Техническое решение этих вопросов заключается в создании переключающих устройств, работающих от дистанционного управления с применением токоограничивающих реакторов и резисторов.

На фотографии, показанной в начале статьи, у силового трансформатора используется автоматическое регулирование выходного напряжения под нагрузкой за счет создания конструкции АРН, сочетающей релейную схему управления электродвигателя с приводным механизмом и контакторами.

Принцип и режимы работы

В основу работы силового трансформатора заложены те же законы, что и у обычного:

Проходящий по входной обмотке электрический ток с изменяющейся по времени гармоникой колебаний наводит внутри магнитопровода меняющееся магнитное поле.

Изменяющийся магнитный поток, пронизывая витки второй обмотки, наводит в них ЭДС.

При эксплуатации и проверках силовой трансформатор может оказаться в рабочем или аварийном режиме.

Рабочий режим создается подключением источника напряжения к первичной обмотке, а нагрузки — ко вторичной. При этом величина тока в обмотках не должна превышать расчетных допустимых значений. В этом режиме силовой трансформатор должен длительно и надежно питать все подключенные к нему потребители.

Разновидностями рабочего режима являются опыт холостого хода и короткого замыкания, создаваемые для проверок электрических характеристик.

Холостой ход создается размыканием вторичной цепи для исключения протекания в ней тока. Он используется для определения:

потерь в стали на намагничивание сердечника.

Опыт короткого замыкания , создается шунтированием накоротко выводов вторичной обмотки, но с заниженным напряжением на входе в трансформатор до величины, способной создать вторичный номинальный ток без его превышения. Этот способ используют для определения потерь в меди.

К аварийным режимам трансформатора относятся любые нарушения его работы, приводящие к отклонению рабочих параметров за границы допустимых для них значений. Особенно опасным считается короткое замыкание внутри обмоток.

Аварийные режимы приводят к пожарам электрооборудования и развитию необратимых последствий. Они способны причинить огромный ущерб энергосистеме.

Поэтому для предотвращения подобных ситуаций все силовые трансформаторы снабжаются устройствами автоматики, защит и сигнализации, которые предназначены для поддержания нормальной работы первичной схемы и быстрого отключения ее со всех сторон при возникновении неисправностей.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector