- Твердотельное реле своими руками
- Схема
- Детали и корпус
- Изготовление твердотельного реле
- Смотрите видео
- Как собрать реле времени своими руками?
- Несколько слов о разновидностях
- Что понадобится для изготовления?
- Создаем реле времени на 12 и 220 Вольт
- Идея 1. На диодах
- Идея 2. На транзисторах
- Идея 3. На базе микросхем
- Идея 4. На базе таймера NE555
- Простое твердотельное реле своими руками
Твердотельное реле своими руками
В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.
Схема
Посмотрим схему этого очень полезного и нужного устройства.
Основу схемы составляют силовой симистор Т1 — BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.
Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.
Детали и корпус
- F1 — предохранитель на 100 мА.
- S1 — любой маломощный переключатель.
- C1 – конденсатор 0.063 мкФ 630 Вольт.
- C2 – 10 — 100 мкФ 25 Вольт.
- C3 – 2.7 нФ 50 Вольт.
- C4 – 0.047 мкФ 630 Вольт.
- R1 – 470 кОм 0.25 Ватт.
- R2 – 100 Ом 0.25 Ватт.
- R3 – 330 Ом 0.5 Ватт.
- R4 – 470 Ом 2 Ватта.
- R5 – 47 Ом 5 Ватт.
- R6 – 470 кОм 0.25 Ватт.
- R7 – варистор TVR12471, или подобный.
- R8 – нагрузка.
- D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например — 1N4007.
- D2 – стабилитрон на 6.2 Вольта.
- D3 – диод 1N4007.
- T1 – симистор ВТ138-800.
- LED1 – любой сигнальный светодиод.
Изготовление твердотельного реле
Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.
Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.
Далее размещаем следующие детали в соответствии со схемой и припаиваем их.
Припаиваем провода для подключения питания и нагрузки.
Помещаем устройство в корпус, предварительно испытав его при минимальной нагрузке.
Испытание прошло успешно.
Смотрите видео
Смотрите видео испытания устройства совместно с цифровым регулятором температуры.
Источник
Как собрать реле времени своими руками?
Для обеспечения логики работы
электрических устройств часто необходимо учитывать какой-то заданный временной
промежуток. Для этого в цепь включаются различные таймеры и реле времени.
Сегодня большинство таких приборов можно приобрести в интернете, но при желании
вы можете изготовить реле времени своими руками. Тем более что подобная
самоделка всегда найдет применение в решении каких-либо бытовых задач.
Несколько слов о разновидностях
Электронные таймеры для установки задержки включения и отключения используются в микроволновках, стиральных машинах, системах обогрева, для обустройства умного дома и т.д. Принцип действия реле времени основывается на установке временного интервала для задержки в работе электрической сети. На практике такое устройство может иметь различный способ замедления:
- электромагнитное;
Из-за сложности настройки и дефицита определенных элементов далеко не все реле времени можно собрать своими руками. Наиболее простым вариантом для изготовления и рассмотрения являются электронные модели, так как достать комплектующие для них сегодня можно как из старого оборудования, так и с любого магазина радиодеталей.
Электромеханические реле и другие варианты доступны в случае наличия специфических комплектующих, которые далеко не всегда можно найти в свободной продаже.
Что понадобится для изготовления?
В зависимости от выбранной модели процесс может оказаться как простым, так довольно трудоемким. Поэтому всем необходимым лучше запастись заранее, чтобы не останавливаться на половине проделанной работы.
Для сборки реле времени вам понадобится:
- набор радиодеталей – в каждом конкретном примере самодельного реле их перечень будет отличаться, но основная номенклатура останется неизменной (резисторы, конденсаторы, транзисторы, микросхемы, промежуточные реле или переключатели, блоки питания или понижающие трансформаторы, катушки и т.д.);
- основание для набора элементов – печатная плата, диэлектрическая поверхность или каркас, также выбираются исходя из местных условий;
- паяльник, припой и другие приспособления для соединения элементов цепи.
- корпус – для защиты элементов реле от различных механический воздействий, попадания пыли, влаги и засорителей;
- блок управления или программирования – если вы планируете сделать регулируемую задержку.
В некоторых ситуациях вышеперечисленные части можно позаимствовать из
старых электронных приборов, если он вам подходят, в противном случае их нужно
приобрести. С конкретным перечнем вы сможете определиться после того, как
выберете конкретную модель, которую хотите изготовить.
Создаем реле времени на 12 и 220 Вольт
В зависимости от величины питающего напряжения, к которому подключается нагрузка, определяется и уровень потенциала, под которым будут находиться элементы реле времени. На практике для создания временных задержек применяются как работающие от сети 220В, так и от безопасного низкого 12В.
Первый вариант считается более простым, поскольку работа осуществляется напрямую от сети. Также схема на 220 В актуальна для питания особо мощной нагрузки – двигателей или бытовых приборов.
Идея 1. На диодах
Рассмотрим вариант простейшего логического элемента для работы в цепи 220В.
Здесь включение происходит при нажатии кнопки S1, после чего напряжение подается на диодный мост. С моста потенциал переходит на времязадающий элемент, состоящий из резисторов и конденсатора. В процессе накоплении заряда тиристор VS1 откроется, и ток протечет через лампу освещения L1. Когда емкость конденсатора полностью зарядится, тиристор перейдет в закрытое состояние, после чего срабатывает реле и лампа гореть перестанет.
Максимальную выдержку здесь можно установить в несколько десятков секунд,
так как ее величина будет задаваться сопротивлением резистора и емкостью.
Существенным недостатком является то, что эта схема несет угрозу человеческой
жизни при поражении электротоком. Поэтому далее рассмотрим пример изготовления
реле времени на 12В.
Идея 2. На транзисторах
Принцип действия такого реле времени основывается на использовании полупроводниковых приборов для задачи временного промежутка. На практике могут использоваться схемы как с одним транзистором, так и с большим числом. Наиболее актуальные для самостоятельного изготовления реле времени на двух транзисторах – они характеризуются лучшей стабильностью и управляемостью.
Пример такого электронного устройства приведен на рисунке ниже:
Для ее практической реализации вам понадобится обзавестись следующими элементами:
- резисторами – одним на 100 кОм и тремя на 1 кОм;
- двумя транзисторами КТ3102Б или идентичными;
- конденсатором для создания задержки выключения/включения;
- кнопка для запуска реле времени;
- промежуточное реле или коммутатор;
- светодиод для сигнализации состояния;
- печатная плата для сборки всех деталей.
Принцип работы такого реле времени заключается в подаче напряжения 12 В на емкостной элемент C1. После чего происходит зарядка конденсатора до определенного потенциала, величины которого будет достаточно для открытия транзистора VT1.
Ток заряда для емкостного элемента определяется сопротивлением ветви C1 – R1 – чем больше сопротивление, тем меньше ток, а время накопления заряда больше. Соответственно, для повышения или уменьшения времени включения или выключения нагрузки можно использовать переменный резистор для R1.
После разряда емкости на базу транзистора VT1
поступит сигнал открытия, и электрический ток начнет протекать через эмиттер и
коллектор, резисторы R2 и R3. Эти номиналы резисторов
подбираются для открытия второго транзистора VT2,
работающего в режиме электронного ключа на включение основной нагрузки.
Открытый VT2 подает напряжение на обмотку реле K1, сердечник в нем притягивается и производит операции с нагрузкой. Одна из пар контактов электромагнитного реле воздействует своими контактами на цепь питания светодиода, сигнализирующего о состоянии устройства.
Кнопка SB1 в цепи позволяет обнулить заряд конденсатора – это обязательная процедура пере каждым последующим пуском, что составляет определенные трудности, которые решаются установкой микросхем.
Идея 3. На базе микросхем
Это более сложный вариант, чем с использованием транзисторов, но цифровое
реле не требует нажатия кнопки для начала нового цикла, они более устойчивы. Циклическое
реле позволяет выполнять несколько операций в автоматическом режиме, за счет
наличия микросхемы существует источник внутреннего опорного питания, можно
значительно увеличить пределы задержки времени.
Посмотрите на рисунок, приведенная здесь схема рассчитана на работу в цепи 220 В. Для ее реализации вам понадобятся резисторы разного номинала, указанные на схеме, диодный мост, пара транзисторов, полупроводниковые элементы, конденсаторы, промежуточное реле, микросхема.
Ее принцип действия идентичен с описанным ранее вариантом на двух транзисторах с той разницей, что в цепи управления временной задержкой появляется микросхема. С помощью которой заряд конденсатора может накапливаться в десятки раз дольше, соответственно, получается возможность увеличения времени задержки.
Процесс сборки не представляет особых трудностей для опытных
радиолюбителей, имеющих навыки пайки и чтения схем. Однако для новичков такое
реле времени может представлять определенную сложность, поэтому им следует
внимательно относиться к процессу.
Идея 4. На базе таймера NE555
Этот вариант также относится к электронным реле, в котором задержка времени
устанавливается при помощи популярного таймера NE555. С его помощью вы сможете
собрать таймер, который оперирует коммутационными процессами, как на включение,
так и на отключение.
Как видите на схеме, таймер выполняет роль управляющего ключа, разрешающего
выдачу электрического сигнала либо напрямую к прибору, либо через оперирующий
орган – катушку реле. Когда времязадающая цепочка из двух резисторов и
конденсатора достигнет насыщения, таймер выдаст на выход реле времени управляющий
сигнал, который притянет к катушке прибора сердечник и замкнет контакты. К
выходной катушке параллельно подключается светодиод, сигнализирующий о
состоянии реле.
Практическая реализация этой схемы также требует определенных навыков и знаний в пайке радиодеталей и изготовлении печатных плат.
Следует отметить, что таймер и микросхема хоть и дают более устойчивую работу, но не могут похвастаться способностью к программированию. Современные цикличные таймеры на микроконтроллерах представляют неограниченные функции в формировании логики работы, но собрать их в домашних условиях достаточно сложно.
Источник
Простое твердотельное реле своими руками
Твердотельное реле, представляющее собой мощный тиристорный (симисторный) электронный ключ удобнее, надежнее, имеет значительно больший ресурс и работает бесшумно, по сравнению с традиционными электромагнитными реле. Такой ключ-реле не имеет подвижных частей, искрящих-пригорающих-изнашивающихся контактов. Не трудно сделать (даже в кустарных условиях) такое электронное реле любой мыслимой степени защиты (пыль, влажность, агрессивные среды). В большинстве случаев электронные ключи-реле с успехом применяются для коммутации нагрузки на переменном токе в строящихся приборах и аппаратах, модернизируя или ремонтируя старые приборы (применяя мощные электронные ключи) улучшаем их характеристики. Например, выход из строя примененных в множестве бытовой техники механических термостатов с биметаллическими изгибающимися контактами – очень частая причина поломок. Применив подобный электронный ключ мы разгружаем контактную группу штатного механического термостата, колоссально повышая его ресурс.
Здесь, реле-электронный ключ предназначено для управления электрическими нагревателями-спиралями в специальной печи небольшой мощности. Твердотельное реле управляется температурным контроллером имеющим специальный выход. Для сопряжения с контроллером применен транзисторный каскад. В целом, схема исполнительной части повторяет [1], отличаясь исполнением. Здесь, в качестве ключей применены симисторы в корпусах ТОР-3, что позволило сделать сборку вполне компактной.
Принципиальная схема твердотельного реле на симисторе. Здесь применен симистор ВТА-41, транзистор КТ315. Симисторная оптопара – МОС3020 (ток включения светодиода 30 мА). Цепочка С1, R3 предназначена для улучшения динамических характеристик симистора, меньшее из диапазона сопротивлений соответствует резистивной нагрузке ключа, большее – индуктивной. Резистор греется, лучше подобрать керамический, мощностью не менее 5 Вт. При необходимости, ключ может быть применен и для ручного включения, подобно [2], в этом случае транзисторный каскад удаляется, а на светодиод подается питание от маломощного сетевого блока. Такую схему исполнительного устройства можно применить и для контроллеров, не оснащенных специальным (для твердотельных реле) выходом. Достаточно, чтобы устройство управления имело обычный релейный выход, пусть и слабый. Нормально разомкнутую группу контактов штатного реле, следует при этом включить в разрыв питания светодиода.
В качестве радиаторов для симисторного ключа применены алюминиевые корпуса от отслуживших свой срок жестких дисков персонального компьютера. Они оказались вполне удобны для такого применения – преотлично нашлось место для крепления симистора, хорошо поместились и все детали высоковольтной части. Размер корпуса у HDD стандартен, имеются отверстия с нарезкой для специальных коротких саморезов. В ряде случаев, очень удобно применять и металлический корпус от старого системного блока. Модули симисторных ключей при этом монтируются на штатные места в специальную «корзину». Узко-высокий корпус-башню лучше проектировать для ее горизонтального положения, при этом все радиаторы с ключами внутри будут расположены вертикально, для нормального естественного охлаждения (не забыть про вентиляционные отверстия). Либо применять обдув и контроль температуры.
Мой блок управления будет трехфазным, это усложнит схему и увеличит громоздкость блока управления, зато втрое снизит проходящие токи, равномерно распределит греющиеся элементы (симисторы, элементы снабберов) и позволит задействовать пусть и перекошенную, но трехфазную деревенскую сеть.
Что понадобилось для работы.
Набор инструмента для электромонтажа, паяльник средней мощности (40…60 Вт) с принадлежностями, мультиметр, фен строительный или специальный для работы с термотрубками.
Набор инструмента для некрупных слесарных работ, ножницы по металлу, электрическая дрель или шуруповерт, набор сверл.
Материалы – отслужившие HDD, потребные радиоэлементы, крепеж, провод, мелочи
В своем электрическом хламе подобрал три гарантированно ненужных жестких диска, удалил платы контроллеров и механическую часть, оставил только крашеный порошковой краской алюминиевый поддон. В одном из вариантов HDD мотор дисков оказался насмерть запрессованным, оставил как есть, он не помешает.
Разметил места креплений для крупных элементов. Керамический 10 Вт резистор снаббера закрепил жестяной обоймой вырезанной из банки от сгущенного молока (съесть, отмыть, высушить, отрезать торцы, выровнять). Обоймы с резисторами закрепил винтиками М3 (+гайки-шайбы-стопоры).
Симисторы в выбранном месте прижал планками из нетонкого текстолита. Те же винтики М3 со всем сопутствующим, симистор изолировал от радиатора пластинкой из тонкой слюды. Под пластинку и под симистор плюхнул немного теплопроводящей пасты.
Весь электромонтаж велся короткими жесткими проводами – толстой медной луженой проволокой изолированной термотрубкой. Схема несложная, хватило выводов механически закрепленных элементов. Для более удобного подключения нагрузки, сделал от ножек симистора короткие проволочные выводы, сигнал управления подключается к выводам торчащей оптопары. Чтобы не путаться, незадействованный вывод откусил.
Испытания нагрузкой показали, что железка при работе с 2 кВт нагрузкой нагревается незначительно. Вместо сигнала управления зажигал светодиод оптопары от регулируемого БП, установив ток защиты 10 мА.
После проверки работоспособности каждого ключа, собрал трехфазный макет. Все три светодиода оптопар ключей (МОС3022, ток включения светодиода 10 мА) включены параллельно к одному транзисторному каскаду. Такое включение не рекомендуется – сложно достичь полной синхронности работы из-за неравенства, неидентичности оптопар. Мне пришлось применить оптопары имеющиеся. Из их большого количества отобрал три с одинаковыми измеренными параметрами светодиодов. Кроме того, возможной несинхронностью включения нагревателей в печи вполне можно пренебречь. Собственно, даже отказ одного из нагревателей скомпенсирует термоконтроллер.
Согласующий транзисторный каскад собран на отдельной некрупной платке и снабжен специальными проволочными выводами для винтовых клемм контроллера. Для уменьшения возни с травлением платку спроектировал так, чтобы границы между широкими контактными площадками легко и удобно прорезать бормашиной.
В качестве нагрузки-индикатора включил три 60 Вт лампы накаливания. Чтобы ничего не замкнуло в самый неподходящий момент, смонтировал все крупные элементы на живую нитку на куске ДСП. Пришлось к рабочему столу протянуть и все три фазы. Все отлично, все три включаются синхронно и надежно.
Источник