Регулятор плавный для плиты

Замена регулятора мощности конфорки Gorenje с фишками на регуляторы без фишек

Опубликовано 28.02.2020, автор Коновалова Наталья Владимировна

Ранее на плитах GORENJE со стеклокерамической варочной поверхностью устанавливались регуляторы мощности конфорки 156003. Сейчас эти переключатели не выпускаются. Официальной заменой этого регулятора является регулятор мощности 50.87021.001 (код детали 716269)

Замена регулятора мощности конфорки 156003 на регулятор 716269

ВНИМАНИЕ Если вы не уверены в своей квалификации, доверьте замену переключателей специалисту по ремонту электроплит. Все действия при самостоятельном ремонте делаются на ваш страх и риск, автор статьи ответственности за ваши действия не несёт.

  1. Все маркировки на старом и новом регуляторе совпадают ( S1, S2, P1, P2, 2, 4. ). Разница лишь в их расположении.
  2. Для перестановки контактов необходимо раскрыть пластиковые корпуса фишек и изъять контакты. И подключить согласно маркировке.

Сопутствующие товары

Регулятор мощности однозонной стеклокерамической конфорки плиты GORENJE 716269 зам. 88512, 379209, 365756, 373176, 156003, 599596

Переключатель, плавный регулятор мощности однозонной стеклокерамической конфорки плиты Горенье

Регулятор мощности конфорок GORENJE 50.77021.001 НЕ ПОСТАВЛЯЕТСЯ

Плавный регулятор мощности стеклокерамических конфорок плиты Горенье

Источник

Контроллер управления кухонной электроплитой. Регулятор мощности и таймер отключения

Технические характеристики контроллера электроплиты

• Симисторный регулятор позволяет регулировать мощность в активной нагрузке от нуля до 100% с шагом 1%. Величина регулируемой мощности определяется типом тиристора и свойствами радиатора охлаждения.
• Для быстрого разогрева предусмотрена подача 100% мощности на заданное время, от нуля до 9 мин
• Предусмотрен таймер обратного отсчета времени нагрева, от нуля до 999 мин.
• Возможен выбор способа регулирования пропуском периодов или управлением длительностью полупериода (фазовый метод). Позволяет менять способы регулирования во время работы.
• Запоминание всех установок при плановом или случайном отключении устройства от сети.
• Габариты устройства 125×70 х 62 мм.

Краткое описание режимов регулирования

Пропуск периодов

Пропуск периодов позволяет решить проблему электромагнитной совместимости, так как включение симистора происходит в момент перехода сетевого напряжения через нуль.

Известно, что отдаваемую мощность прибора работающего на переменном напряжении можно регулировать, пропуская в неё не все периоды напряжения сети. Если взять сеть частотой 50Гц, то в 2с проходит 100 периодов, значит если в 2 с пропустить, допустим, 10 периодов, то получим 10% мощности, и точность регулирования составит 1%. При этом очень желательно чтобы периоды шли не пачками, а были бы распределены равномерно.
Это достигается использованием алгоритма Брезенхема, который распределяет заданный процент мощности равномерно во времени. Причем это достигается применением в программе только целочисленной арифметики, без деления и умножения, что существенно упрощает и ускоряет вычисления. Вычисления и управление по алгоритму Брезенхема запускаются сразу после поступления внешнего прерывания.
Режим пропуска периодов применим для управления резистивными нагрузками, но не применим для осветительных приборов, так как вызывает мигание ламп накаливания.

Фазовое регулирование

Альтернативным методом управления мощностью является метод фазового управления
Для изменения мощности, подведенной к нагрузке через симистор, может использоваться фазовое управление. Сущность метода заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Это и будет так называемая широтно-импульсная модуляция, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД.

Преимуществом этого метода является то, что частота пульсаций на нагрузке остается равной сетевой. Это важно для управления осветительными приборами, так как снижение частоты может сказаться на появлении мерцания, заметного глазом. Но при регулировании данным методом появляется особенность неравномерности характеристики регулирования.

Прямое решение этого уравнения требует поиска корней квадратного уравнения и вычисление арккосинуса полученного корня. Это довольно сложная задача для микроконтроллера, как по времени, так и по объему ресурсов. Поэтому значительно более простым оказалось применение метода кусочно-линейной аппроксимации, без значительной потери точности, что наглядно видно из графика.

По оси x указано значение устанавливаемой мощности в процентах, а по оси y значение угла открывания симистора в значениях Π/100. Синий график – вычисленный по формулам, а коричневый создан с помощью аппроксимации. Как видно из рисунка расхождения между реальными и вычисленными значениями весьма незначительны.
Неприятной особенностью фазового метода являются помехи, которые могут появиться в связи с резким переключением симистора, поэтому желательно применение фильтров на входе.

Для обоих методов управления мощностью необходимо знать, когда сетевое напряжение переходит через нуль и поэтому основной цикл программы — отслеживание перехода сетевого напряжения через ноль и подача его на вход внешнего прерывания микроконтроллера, как на вход с наивысшим приоритетом.

Схема и описание силовой части регулятора мощности

Силовой блок выдает напряжение +5V, формирует импульсы перехода сети через ноль и содержит схему управления нагрузкой с помощью симистора.
Детектор перехода сетевого напряжения через ноль взят из журнала «Радиолоцман». Он выдает импульсы перехода с интервалом 10 мсек.
Конденсатор С6 заряжается до 25 Вольт — уровня ограничения стабилитрона D12. Входной ток ограничивается резистором R2. Когда выпрямленное входное напряжение опускается ниже напряжения на конденсаторе С6, открывается транзистор Q3 и генерирует импульс длительностью в несколько сотен микросекунд. Оптрон U2 обостряет фронты и делает выходной импульс более прямоугольным.

Схема источника +5 Вольт подробно описана в журнале «Радио» № 11 за 2007 год, стр. 30, в статье «Доработка ЗУ сотового телефона». Добавлен стабилизатор на 78L05 для уменьшения помех и для дополнительной стабилизации.
Работа схемы: Напряжение сети через резистор R1, который выполняет функции предохранителя, поступает на мостовой выпрямитель на диодах D1 —D4 и сглаживается конденсатором С1. Стабилизация выходного напряжения осуществляется косвенным методом. Для этого напряжение со второй обмотки трансформатора выпрямляется диодом D5, сглаживается конденсатором С2 и через стабилитрон D6 поступает на базу транзистора. Для защиты источника в момент подключения к сети, а также при резких колебаниях напряжения в сети, установлена защита по току Q2 на элементах Q1, R7 на уровне 60…70 мА.

Подключение симистора выполнено по схеме из даташита на оптосимистор MOC3052.
Когда силовой блок проектировался, предполагалось, его применение только в режиме с пропуском периодов, поэтому в схеме отсутствуют фильтры для защиты от помех. Для работы в режиме фазового регулирования их желательно добавить, хотя бы простейший LC фильтр перед симистором.

Схема управляющей части регулятора мощности

NB! На принципиальной схеме неверно указаны номиналы резисторов R2 — R6. Правильный номинал 680 Ом.
Применен индикатор с общим катодом.
Схема блока управления получилась довольно простой. Три кнопки управления, 3-х разрядный индикатор и два светодиода позволяют управлять и следить за всеми функциями устройства.
Платы блоков соединяются 4-х проводным шлейфом.

Программное обеспечение

Программа написана на языке Си для компилятора «mikroC for PIC». Комментарии, расположенные в программе способствуют пониманию ее работы.
• Для управления режимами работы применено управление с помощью одной кнопки с подсчетом числа нажатий. Алгоритм и часть кода взяты из статьи «Интерфейс — одна кнопка».
Кнопку можно нажимать кратко (несколько раз), длинно или делать разные комбинации нажатий. Сколько за две секунды успеем «натыкать» — всё наше. Далее запустится процедура анализа собранных данных и всё расставит по порядку.
Бороться с дребезгом тут уже не обязательно, так как временные задержки организуются автоматически. См. подробности в статье.

• В программе задействованы прерывания по внешнему входу INT, по таймеру 1 и таймеру 2.
На вход INT поступают импульсы с детектора перехода через ноль с периодом 10 мсек. Импульсы с таким периодом используются для получения фазовой регулировки, а для управления пропуском периодов необходим период 20 мсек, который получаем программно, пропуская один из импульсов. Алгоритм Брезенхема удачно вписался в программу внешних прерываний.
С таймера TMR1 получаем импульсы 5 мсек, которые используются для динамической индикации, работы кнопки «Выбор» и отсчета системного времени.
Таймер TMR0 настроен на время около 100 мксек и применяется только в режиме фазового управления.

• Память EEPROM использована для сохранения всех режимов при отключении или внезапном пропадания питания. Запись в память происходит после пропадания импульсов внешнего прерывания. Восстановление данных из памяти происходит при включении регулятора в сеть. При таком использовании EEPROM резко уменьшается количество операций записи и время, которое она занимает.

Сборка и устройство прибора

Прибор собран на двух платах, соединенных между собой стойками.

Радиатор для симистора должен иметь достаточную площадь для отвода тепла.

Трансформатор и некоторые детали для источника питания +5 Вольт применены от старого телефонного зарядника. Оптосимистор U1 можно заменить аналогом, но следует учесть, что он должен быть без детектора нуля. Платы соединены между собой 4-х проводным шлейфом. Печатная плата для блока управления не создавалась, а была взята от предыдущей версии. С нее были удалены лишние детали и сделаны необходимые доработки. Обе платы и розетка для включения нагрузки заключены в корпус из металла и пластика.

Первое включение и проверка работы

Учитывая, что силовая часть устройства гальванически связана с сетью, желательно проявить максимум осторожности или использовать разделительный трансформатор при первом включении и проверке сигналов.
1. Включить силовую часть устройства.
2. Проверить напряжение источника +5 Вольт на выходе микросхемы 78L05.
3. Проверить наличие импульсов перехода через ноль – должны быть импульсы с периодом 10 мсек.
4. Соединить плату шлейфом, подключить в качестве нагрузки лампу накаливания 15 – 100вт и включить в сеть. При включении лампа загорится полным накалом и также загорится красный светодиод. После некоторого времени красный светодиод гаснет, и лампа начинает мигать в зависимости от установленной мощности. Если перейти в фазовый режим, то лампа будет гореть без миганий, а яркость будет изменяться в зависимости от установленной мощности. Желтый светодиод ШИМ практически полностью повторяет режим свечения лампы.
5. Проверить регулятор во всех режимах работы, согласно инструкции по управлению устройством.

Управление прибором

• Режим управления мощностью – одно короткое нажатие кнопки «Выбор». На индикаторе отображается величина мощности в процентах.
• Режим таймера отключения — два коротких нажатия кнопки «Выбор». На индикаторе отображается время, оставшееся до отключения нагрева в минутах. В этом режиме идет обратный отсчет времени в минутах. Можно установить время отключения таймера в минутах от 0 до 999. точка в последнем разряде мигает, если идет отсчет.
• Режим установки времени быстрого разогрева — три коротких нажатия кнопки «Выбор». На индикаторе отображается время, подачи 100% мощности нагрева в минутах и секундах. При этом точка в первом разряде не мигает.
• Режим изменения варианта регулировки с пропуском периода или фазовый – одно длинное нажатие кнопки. На индикаторе отображается режим PUL — с пропуском периода или F – фазовый.

В любом из режимов можно изменить значения кнопками «+» и «-». Нажатие кнопки кратковременно — добавление или уменьшение, удержание быстрый перебор. При этом кнопкой «Выбор» можно перейти в любой режим и просмотреть параметры любого режима, если не нажимать кнопки «+» и «-».

Если возникнет необходимость вернуться к начальным установкам, это можно сделать, удерживая кнопку «Выбор» около секунды при включении устройства в сеть.

Файлы

Ссылки на источники

Спасибо за внимание!
Иван Внуковский,
г. Днепропетровск

Источник

Регулятор мощности для электроплиты

Все, кто хоть раз готовил на электроплитах простой конструкции, знает одно их очень неприятное свойство — на «троечке» суп выскакивает из кастрюли, на «двоечке» не кипит. В этой ситуации выручит предлагаемая схема, позволяющая плавно регулировать мощность на нагрузке от 0 до практически 100%. Схема регулятора достаточно проста в сборке даже для начинающего радиолюбителя и, главное, не содержит дорогих и дефицитных деталей. Несмотря на простоту, устройство имеет достаточно высокий КПД (до 98%) и позволяет управлять нагрузкой до 2 кВт, что вполне достаточно для большинства нагревательных элементов электроплит.

Регулятор мощности для электроплиты

В качестве управляющих элементов использованы два тиристора VS1, VS2, а поскольку им придется работать с переменным током, один будет управлять положительной полуволной, другой – отрицательной. Именно поэтому тиристоры включены встречно-праллельно. Изменение мощности на нагрузке производится изменением угла открывания тиристоров. За это отвечает узел, собранный на однопереходном транзисторе VT1.

При вращении движка переменного резистора R3 изменяется время зарядки конденсатора С1. Чем быстрее зарядится конденсатор, тем скорее откроется транзистор после начала сетевого периода. Импульсный трансформатор сформирует на своих обмотках II и III импульсы, которые откроют один из тиристоров в зависимости от текущей фазы сетевого напряжения. С этого момента тиристор останется открытым до окончания периода и через нагрузку потечет ток.

Таким образом, изменяя сопротивление резистора R3, мы можем изменять скорость реакции схемы на начало сетевого периода, а значит и среднюю мощность на нагрузке. Питается узел регулировки от собственного низковольтного источника питания, состоящего из выпрямительного моста VD1 и простейшего параметрического стабилизатора, собранного на стабилитронах VD2, VD3. Резистор R1 – токоограничивающий. Сглаживающего конденсатора, как вы заметили, нет – он не нужен.

Несколько слов о деталях. На месте VT1 может работать транзистор КТ117 с буквами А или Б. При необходимости такой транзистор можно собрать самому по схеме, приведенной ниже:

Схема замены однопереходного транзистора КТ117

Аналог однопереходного транзистора

Диодный мост VD1 можно взять типа КЦ402, КЦ405 или вообще собрать мост из четырех диодов типа Д310, Д311, Д226 или Д7. Токоограничивающий резистор R1 должен иметь рассеиваемую мощность не менее 2 Вт. Чтобы установленная мощность не «уплывала» в процессе нагрева элементов схемы, конденсатор С1 лучше использовать с минимальным температурным коэффициентом емкости (ТКЕ). Это могут быть типы К73-17, К73-24 и др.

В качестве импульсного трансформатора можно использовать МИТ-4 или МИТ-10, но, конечно, можно изготовить его и самому. Для этого понадобится ферритовое кольцо типоразмера К20х10х6 (можно и несколько иных размеров) из феррита марки М2000НМ. На него наматываются три обмотки, каждая из которых содержит 40 витков провода ПЭВ-1 0.31. Удобнее мотать сразу три обмотки, сложив провод втрое и сделав намотку равномерно по кольцу. При монтаже их придется сфазировать – подключить начала и концы обмотки согласно схеме, на которой начало каждой из обмоток обозначено точкой. Тиристоры нужно установить каждый на свой радиатор с поверхностью охлаждения не менее 200 см 2 каждый.

Налаживание конструкции сводится к установке максимальной мощности подбором номинала резистора R2. Это удобно делать, подключив в качестве нагрузки лампу накаливания 100-200 Вт. При полностью выведенном в нижнее положение движке резистора R3 (минимальное сопротивление) подбирают R2 таким образом, чтобы лампа светилась в полный накал, но при малейшем увеличении R3 накал начинал уменьшаться.

В заключение замечу, что этот регулятор можно использовать и для регулировки яркости лампы, мощности печи и даже в качестве регулятора температуры жала паяльника. В любом случае нагрузка должна быть активной и не должна превышать 2 кВт.

А.Н. Евсеев «Электронные устройства для дома», 1997 г.

Внимание! Конструкция имеет бестрансформаторное питание, поэтому во время работы на всех ее элементах присутствует опасное для жизни напряжение. Перед любой перепайкой или изменением схемы обязательно отключайте конструкцию от сети!
.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector