- Регулятор мощности паяльника своими руками – варианты схем
- Варианты монтажа регуляторов мощности паяльника
- Варианты схем регулятора мощности паяльника
- Необходимые элементы для монтажа регулятора мощности паяльника своими руками
- Схема регулятора мощности паяльника с выключателем и диодом
- Регулятор мощности для фена своими руками
- Регулятор мощности для паяльника своими руками
- Как сделать надёжный регулятор мощности для паяльника своими руками
- Подключение готового регулятора мощности нагрева
- Самодельный двухступенчатый регулятор температуры
- На симисторе (с индикатором)
- Изготовление печатной платы
- Монтаж
- Установка конструкции в отдельный корпус
- Видео: монтаж схемы регулятора на симисторе и сборка в корпусе
- На тиристоре
- Схема на мощном тиристоре
- На микроконтроллере с индикацией
- Проверка и регулировка схемы блока терморегулятора
Регулятор мощности паяльника своими руками – варианты схем
Старые паяльники, не оснащённые дополнительным функционалом, греют на полную, пока вилка в сети. А отключённые — быстро остывают. Перегретый паяльник способен испортить работу: им становится невозможно прочно припаять что-либо, флюс быстро испаряется, жало окисляется и припой скатывается с него. Недостаточно нагретый инструмент и вовсе может испортить детали, поскольку припой плохо плавится, паяльник можно передержать впритык к деталям.
Чтобы сделать работу комфортнее, можно собрать своими руками регулятор мощности паяльника, который ограничит напряжение и тем самым не даст жалу перегреваться.
Варианты монтажа регуляторов мощности паяльника
В зависимости от вида и набора радиодеталей, регуляторы мощности паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное — с цифровым индикатором и программным управлением.
В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный — вилка. Для этого часто используют зарядное устройство смартфона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса.
Регулятор мощности своими руками в вилке
Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём. Такой регулятор мощности всегда находится вместе с паяльником — его нельзя забыть или потерять.
Другой вид корпуса для несложных регуляторов — розетка. Она может быть одинарной:
Регулятор мощности своими руками в одинарной розетке
или представлять собой тройник-удлинитель. В последнем очень удобно поставить ручку со шкалой.
Регулятор мощности в бытовом тройнике
Как видите, на месте одной и розеток стоит ручка переключателя со шкалой.
Вариантов монтажа регулятора с индикатором напряжения своими руками тоже немало. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант — удлинитель с вмонтированным туда индикатором, так и оригинальные решения.
Регулятор мощности в розетке с цифровым индикатором
Счетчик на корпусе дает точные цифры для работ, где важна строго определённая температура.
Регулятор мощности в корпусе обычной мыльницы
Плата здесь закреплена внутри винтами.
При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать — например, термоусадочной трубкой.
Варианты схем регулятора мощности паяльника
Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали — приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.
Можно сделать простейший регулятор с диодом и выключателем — чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться. Остальные регуляторы дают возможность задать температуру жала паяльника более плавно — под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками. На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.
Необходимые элементы для монтажа регулятора мощности паяльника своими руками
Тиристор — своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода имеет 3 выхода — управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока. Тиристор, его главные составные части и отображение на схемах:
Тиристор
Симистор, или триак — вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе. Основные части, принцип действия и способ отображения на схемах. А1 и А2 — силовые электроды, G — управляющий затвор:
Симистор
В схему регулятора мощности для паяльника в зависимости от его возможностей также включают следующие радиодетали:
Резистор — служит для преобразования напряжения в силу тока и обратно.
Внешний вид резистора и способ отображения на схеме
Конденсатор — основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь по мере того, как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор.
Конденсатор
Диод — полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном.
Диод
Так диод обозначается на схемах:
Диод — обозначение
Стабилитрон — подвид диода, используется в устройствах для стабилизации напряжения.
Стабилитроны
Микроконтроллер — микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.
Схема регулятора мощности паяльника с выключателем и диодом
Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь — на паяльник подаётся всё напряжение, размыкает — напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым — такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.
Схема с выключателем и диодом
Необходимые детали и инструменты для регулятора мощности паяльника:
- диод (1N4007);
- выключатель с кнопкой;
- кабель с вилкой (это может быть кабель паяльника или же удлинителя — если есть страх испортить паяльник);
- провода;
- флюс;
- припой;
- паяльник;
- нож.
Сборка двухступенчатого регулятора на весу:
- Зачистить и залудить провода. Залудить диод.
- Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку — кембрик.
- Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
- Расположить диод внутри выключателя: минус диода — к вилке, плюс — к выключателю.
- Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва.
- Провода можно спаять. Подключить к клеммам, затянуть винты.
- Собрать выключатель.
Видео о том, как сделать регулятор мощности с выключателем и диодом — пошагово и наглядно:
Источник
Регулятор мощности для фена своими руками
Модернизация паяльного фена СТ-3А
Автор: Upgrader
Опубликовано 31.08.2011
Создано при помощи КотоРед.
2011
Многие начинающие (и не только) радиолюбители сегодня задаются вопросом пайки термофеном, потому что все больше появляется микросхем, которые очень сложно или вообще невозможно паять обычным паяльником (уже довольно многие современные микросхемы просто не делают в привычных легко паябельных корпусах, а например микроконтроллеры можно найти дешевле именно в корпусах для поверхностного монтажа).
Чтобы попробовать как это делается (а иначе трудно это просто представлять), было решено купить самый дешевый паяльный фен широко известной компании CT Brand — СТ-3А, 1600 Вт с плавным регулятором температуры, без дополнительных насадок. И попробовать практически, как происходит пайка и что для этого понадобится в дальнейшем из хорошего оборудования
(на фото здесь и далее показан уже немного модернизированный вариант, не обращайте внимание на маленькие отличия).
Как ни странно, отзывов о подобном фене в интернете найти не удалось (хотя в широко известных магазинах (не буду рекламировать) такой фен есть почти всегда в наличии). Думал — раз так, значит никто еще не жаловался! 🙂
А теперь самое главное!
Померив температуру Горячего, выяснилось что на максимуме мощности она доходит до 300 градусов (хотя лучшего ожидать и не стоило), чего очень не хватает, паять такой температурой совсем невозможно, а вот вентилятор на увеличенной скорости дует слишком сильно — все йейна детали сдует!
Решение такой проблемы заключается в существенном снижении скорости вентилятора, а то в любом случае паять этакие SMD детали сильным потоком плохо — то лишний нагрев ненужных мест платы (особенно там где пластмассовые кнопочки и прочее что боится температуры), а то даже сдувает детальки с платы.
Вентилятор (типа тангенциального или центробежного) крутит небольшой коллекторный низковольтный моторчик, питающийся от 12…15 вольт постоянного напряжения (похожие в принтерах можно найти). Питается от какой-то части спирали в качестве резистора, и последовательно с мотором еще питается схема симисторного регулятора мощности (со стабилизацией напряжения маломощным стабилитроном).
Регулятор мощности представляет из себя симистор BTA12 с оптосимистором МОС3022, управляемый логикой CD4011 (наш аналог К561ЛА7) на которую заведен переменный резистор. Симистор мне показалось греется слишком сильно, по этому увеличил его штатный радиатор дополнительной пластиной, ведь охлаждающий его поток всасываемого воздуха в процессе модернизации уменьшится (но как оказалось, его температура в закрытом корпусе не превышает 70 *С даже в самых худших условиях).
Схема питания мотора упрощенно выглядит так:
Потребляемая мотором мощность не превышает 20 Вт, реально с понижением скорости — менее 7 Вт. Напряжение 12 или 15 вольт штатно (в зависимости от переключателя мощности). Для чего стоит диод (1n4007) параллельно мотору в данной схеме – непонятно, но он просто есть.
Включить последовательно с двигателем вентилятора резистор — идея плохая. Даже большой резистор мощностью 10 Вт очень быстро перегревается, да и «лишняя печка» в корпусе (в ручке. ) фена ни к чему. Поставив вместо диодного моста один диод — вентилятор вообще почти не крутился.
Электролитический конденсатор большой емкости, подключаемый параллельно двигателю никакого эффекта в повышении скорости или плавности вращения не дает (может только немного снизить низкочастотное гудение, похожее на треск) — в нем нет необходимости.
Было решено использовать тиристорный регулятор. Любой тиристорный/симисторный регулятор, схем которых полно в интернете, самых разных конструкций (в том числе готовые диммеры заводского изготовления). Мне приглянулась вот такая наиболее простая схема, которую повторял уже не раз:
Делал из того что было и достаточно компактно — тиристор КУ202Н (Большой он, очень! Можно заменить на практически любой другой маломощный на напряжение от 400в), диодный мост, электролит, резистор(ы) и всё.
Все эти детали легко напаять на самый большой тиристор и прикрутить его к стойке крепления нагревателя штатным шурупом — все надежно держится. Китайской технике — китайские методы монтажа! 🙂 Хотя существующая плата сделана довольно качественно.
О переключателях: в штатном переключателе мощности работы на три положения (третье – выключен) оказались две пары независимых (довольно мощных) контактов, так что было очень кстати задействовать вторые из них для регулировки скорости вращения вентилятора дополнительно (подключением резистора). В процессе эксплуатации выяснилось, что неплохо было бы добавить еще один переключатель — для повышения скорости вентилятора и надежного его пуска, место (и почти готовое отверстие) для него нашлось в том месте, где мог бы стоять семисегментный индикатор температуры (которого в данной модели нет). А вы можете вместо данного выключателя поставить и переменный резистор для плавной регулировки, только учтите, что в данной схеме его мощность желательна не менее 0,5 Вт. Если очень постараться, можно впихнуть внутрь корпуса даже переменный резистор типа СП-1.
Резисторы R3. R5 выбираются экспериментально в зависимости от ваших условий (другой нагреватель, напряжение сети), но не менее 1 кОм (в случае использования переменного, последовательно нужно поставить резистор на 1 кОм или более). Они меняются в некоторых пределах, если менять емкость конденсатора от 1 до 50 мкФ (это полезно для подгона к имеющемуся переменному резистору). Учтите только что чем больше емкость – тем возможно будет большая мощность выделятся на резисторах, хотя у меня 0,25 Вт вроде бы и не грелись.
- Плавная регулировка температуры от 80 до более чем 590 *С и 4 скорости вращения вентилятора.
Температуру можно оценивать приблизительно по цвету спирали и яркости ее свечения, надо только запомнить эту информацию после измерения термометром (если конечно вообще есть такой термометр, у меня — мультиметр со штатной термопарой).
Например это 250 *С (не краснеет):
450 *С – подходящая для пайки (красный):
А это уже очень высокая (опасно для нагревателя!) >600 *С (желтый):
- Зависимость от напряжения сети: меньше напряжение — ниже скорость вентилятора, выше температура. Если напряжение сети скачет более чем на 10% — будет не особо удобно работать, надо думать о стабилизации.
- Неуверенный запуск вентилятора холодного фена на низкой скорости вентилятора. После включения спираль на небольшой мощности за несколько секунд разогревается, после чего начинает медленно вращаться вентилятор, и в течении 40 — 80 секунд плавно выходит на необходимые обороты, после чего можно увеличивать мощность нагревателя до достижения нужной температуры. Прогретый ранее фен включается уже мгновенно.
- Обнаружил что корпус «горячей» части фена обдувается изнутри холодным воздухом через специальные отверстия корпуса вентилятора, таким образом за все время работы корпус почти не нагревался, но после уменьшения скорости вентилятора нагрев увеличился в пределах разумного (руками брать можно, пластмасса остается такой же жесткой).
- Шум уменьшился очень существенно.
- Не очень большое потребление электричества (паяю, наверное, где-то при 1000 Вт, а не в два раза больше).
- Сильно разогретая спираль светится и неплохо подсвечивает нагреваемое место. Можно паять в полной темноте при свете фена 🙂 Это к тому же еще и очень красиво (фотографию сделать не удалось).
Если фен покажет свою надежность длительной работой (в чем я сомневаюсь при такой жёсткой эксплуатации), позже планирую сделать стабилизацию напряжения питания вентилятора, свободного места в корпусе вполне достаточно.
Ну и в заключение для тех, кто ни разу не пользовался феном – это действительно нужная вещь: любые «многоногие» микросхемы отпаиваются без проблем, а после некоторой тренировки можно и припаивать так же быстро и качественно, главное только пластиковые детали/провода не сжечь если они есть. Удобно подогревать массивные детали для пайки маломощным паяльником, разбирать ферритовые трансформаторы и прочее (даже небольшую паяльную ванну можно сделать с нагревом этим самым феном). В конце концов, можно и остывший кофе подогреть! 🙂
Недостаток фена такого типа конкретно для пайки — большие габариты и неудобство работы с ним в этом плане (это не паяльник, держать — тяжело и неудобно).
А более подробно обо всем этом без проблем найдете информацию в интернете или на нашем форуме. Удачи!
Источник
Регулятор мощности для паяльника своими руками
Многие паяльники продаются без регулятора мощности. При включении в сеть температура повышается до максимальной и остаётся в таком состоянии. Для её регулировки нужно отключать прибор от источника питания. У таких паяльников флюс моментально испаряется, образуются окислы и жало находится в постоянно загрязнённом состоянии. Его приходится часто чистить. Для припаивания больших компонентов нужна высокая температура, а маленькие детали можно сжечь. Во избежание таких проблем делают регуляторы мощности.
- 1 Как сделать надёжный регулятор мощности для паяльника своими руками
- 1.1 Подключение готового регулятора мощности нагрева
- 1.2 Самодельный двухступенчатый регулятор температуры
- 1.3 На симисторе (с индикатором)
- 1.3.1 Изготовление печатной платы
- 1.3.2 Монтаж
- 1.3.3 Установка конструкции в отдельный корпус
- 1.3.4 Видео: монтаж схемы регулятора на симисторе и сборка в корпусе
- 1.4 На тиристоре
- 1.5 Схема на мощном тиристоре
- 1.6 На микроконтроллере с индикацией
- 2 Проверка и регулировка схемы блока терморегулятора
Как сделать надёжный регулятор мощности для паяльника своими руками
Регуляторы мощности помогают управлять степенью нагрева паяльника.
Подключение готового регулятора мощности нагрева
Если у вас нет возможности или желания возиться с изготовлением платы и электронными компонентами, то можете купить готовый регулятор мощности в магазине радиотоваров или заказать в интернете. Регулятор ещё называют диммером. В зависимости от мощности, устройство стоит 100–200 рублей. Возможно, после покупки вам придётся немного доработать его. Диммеры до 1000 Вт обычно продаются без радиатора охлаждения.
Регулятор мощности без радиатора
Регулятор мощности без радиатора
А устройства от 1000 до 2000 Вт с маленьким радиатором.
Регулятор мощности с маленьким радиатором
Регулятор мощности с маленьким радиатором
И только более мощные продаются с большими радиаторами. Но на самом деле, диммер от 500 Вт должен иметь небольшой радиатор охлаждения, а от 1500 Вт уже устанавливают крупные алюминиевые пластины.
Китайский регулятор мощности с большим радиатором
Регулятор мощности с большим радиатором
Учтите это при подключении прибора. Если необходимо, установите мощный радиатор охлаждения.
Доработанный регулятор мощности
Доработанный регулятор мощности
Для правильного подключения устройства к цепи посмотрите на обратную сторону печатной платы. Там указаны клеммы входа IN и выхода OUT. Вход подключается к сетевой розетке, а выход к паяльнику.
Обозначение клемм входа и выхода на плате
Обозначение клемм входа и выхода на плате
Монтаж регулятора производится разными способами. Для их осуществления не нужны специальные знания, а из инструментов вам понадобятся только нож, дрель и отвёртка. Например, можно включить диммер в шнур питания паяльника. Это самый лёгкий вариант.
- Разрежьте кабель паяльника на две части.
- Подключите оба провода к клеммам платы. Отрезок с вилкой прикрутите ко входу.
- Подберите подходящий по размеру пластиковый корпус, проделайте в нём два отверстия и установите туда регулятор.
Ещё один простой способ: можно установить регулятор и розетку на деревянную подставку.
- Прикрутите к деревянной дощечке плату и розетку с коротким проводом.
- Возьмите вилку с двухжильным шнуром и подключите её ко входу платы.
- Розетку подключите к выходу.
Диммер на деревянной подставке
К такому регулятору можно подключать не только паяльник. Теперь рассмотрим более сложный, но компактный вариант.
- Возьмите большую вилку от ненужного блока питания.
Вилка от блока питания
Регулятор в корпусе
Возьмите переносную розетку и включите в сеть. В неё вставьте вилку с регулятором.
Это устройство, как и предыдущее, позволяет подключать разные приборы.
Самодельный двухступенчатый регулятор температуры
Самый простой регулятор мощности — двухступенчатый. Он позволяет переключаться между двумя значениями: максимальным и половиной от максимального.
Двухступенчатый регулятор мощности
Двухступенчатый регулятор мощности
Когда цепь в разомкнутом состоянии, ток протекает через диод VD1. Выходное напряжение 110 В. При замыкании цепи выключателем S1 ток обходит диод, так как он подключён параллельно и на выходе получается напряжение 220 В. Диод подбирайте в соответствии с мощностью вашего паяльника. Выходная мощность регулятора рассчитывается по формуле: P = I * 220, где I — ток диода. Например, для диода с током 0,3 А мощность считается так: 0,3 * 220 = 66 Вт.
Так как наш блок состоит всего из двух элементов, то его можно разместить в корпусе паяльника с помощью навесного монтажа.
- Припаяйте параллельно детали микросхемы друг к другу непосредственно с использованием лапок самих элементов и проводов.
- Соедините с цепью.
- Залейте всё эпоксидной смолой, которая служит изолятором и защитой от смещений.
- В рукояти сделайте отверстие под кнопку.
Если корпус очень мал, то воспользуйтесь переключателем для светильника. Вмонтируйте его в шнур паяльника и вставьте параллельно выключателю диод.
Переключатель для светильника
Переключатель для светильника
На симисторе (с индикатором)
Рассмотрим простую схему регулятора на симисторе и изготовим печатную плату для него.
Регулятор мощности на симисторе
Регулятор мощности на симисторе
Изготовление печатной платы
Так как схема очень простая, нет смысла из-за неё одной устанавливать компьютерную программу для обработки электросхем. Тем более что для печати нужна специальная бумага. И не у всех есть лазерный принтер. Поэтому пойдём самым простым путём изготовления печатной платы.
- Возьмите кусок текстолита. Отрежьте необходимый для микросхемы размер. Поверхность зашкурьте и обезжирьте.
- Возьмите маркер для лазерных дисков и нарисуйте схему на текстолите. Чтобы не ошибиться, сначала рисуйте карандашом.
Нарисованная маркером схема
Далее, приступаем к травлению. Можно купить хлорное железо, но после него плохо отмывается раковина. Если случайно капните на одежду, останутся пятна, которые невозможно до конца вывести. Поэтому будем использовать безопасный и дешёвый метод. Подготовьте пластиковую ёмкость для раствора. Влейте перекись водорода 100 мл. Добавьте пол столовой ложки соли и пакетик лимонной кислоты до 50 г. Раствор делается без воды. С пропорциями можно экспериментировать. И всегда делайте свежий раствор. Медь должна вся стравиться. На это уходит около часа.
Плата после травления
Плата после лужения дорожекОткусите четыре штырька и впаяйте их в плату
Для нанесения схемы на текстолит можно сделать ещё проще. Нарисовать схему на бумаге. Приклеить её скотчем к вырезанному текстолиту и просверлить отверстия. И только после этого рисовать схему маркером на плате и травить её.
Монтаж
Подготовьте все необходимые компоненты для монтажа:
Катушка с припоем
штырьки в плату;
Штырьки в плату
конденсатор на 100 нФ;
Конденсатор на 100 нФ
постоянный резистор на 2 кОм;
Постоянный резистор на 2 кОм
переменный резистор с линейной зависимостью на 500 кОм.
Приступайте к монтажу платы.
- Откусите четыре штырька и впаяйте их в плату.
Четыре штырька в плате
Установите динистор и все остальные детали, кроме переменного резистора. Симистор припаивайте последним.
Радиатор охлаждения симистора
Мелкой наждачной бумагой зачистьте область крепления элемента. Возьмите теплопроводящую пасту марки КПТ-8 и нанесите небольшое количество пасты на радиатор.
Нанесение пасты на радиатор
Закрепите симистор винтом и гайкой.
Аккуратно отогните плату так, чтобы симистор принял вертикальное положение по отношению к ней. Для того чтобы конструкция стала компактной.
Симистор расположен вертикально к плате
Соединение выводов резистора
Теперь к крайним выводам припаяйте два провода. Противоположные концы проводов соедините с соответствующими выводами на плате.
Соединение резистора с платой
Возьмите розетку. Снимите верхнюю крышку. Подсоедините два провода.
Соединение проводов с розеткой
Припаяйте к плате один провод от розетки.
Соединение розетки с платой
Фактически получается, что регулятор включён последовательно в цепь питания нагрузки.
Схема подключения регулятора к цепи
Схема подключения регулятора к цепи
Если захотите установить светодиодный индикатор в регулятор мощности, то используйте другую схему.
Схема регулятора мощности со светодиодным индикатором
Схема регулятора мощности со светодиодным индикатором
Здесь добавлены диоды:
- VD 1 — диод 1N4148;
- VD 2 — светодиод (индикация работы).
Схема с симистором слишком громоздкая для включения в рукоять паяльника, как в случае с двухступенчатым регулятором, поэтому её надо подключить снаружи.
Установка конструкции в отдельный корпус
Все элементы этого устройства находятся под напряжением сети, поэтому нельзя использовать металлический корпус.
- Возьмите пластиковую коробочку. Наметьте, как в ней будет размещаться плата с радиатором и с какой стороны подключать сетевой шнур. Просверлите три отверстия. Два крайних нужны для крепления розетки, а среднее для радиатора. Головка винта, к которому будет крепиться радиатор, должна быть спрятана под розеткой по причине электробезопасности. Радиатор имеет контакт со схемой, а она имеет непосредственный контакт с сетью.
- Сделайте ещё одно отверстие сбоку корпуса для сетевого кабеля.
- Установите винт крепления радиатора. С обратной стороны наденьте шайбу. Прикрутите радиатор.
Винт крепления радиатора
Отверстия под провода в розетке и корпусе регулятора
Закрепите розетку двумя гайками на М3. Вставьте провода в отверстия и закрутите крышку винтом.
Розетка в сборе
Проложите провода внутри корпуса. Один из них припаяйте к плате.
Соединение розетки с платой
Другой к жиле сетевого кабеля, который предварительно вставьте в пластиковый корпус регулятора.
Соединение розетки с сетевым кабелем
Заизолируйте место соединения изолентой.
Изоляция готового соединения
Регулятор мощности в корпусе с розеткой
Регулятор мощности включается в сеть, а паяльник — в розетку регулятора.
Видео: монтаж схемы регулятора на симисторе и сборка в корпусе
На тиристоре
Регулятор мощности можно сделать на тиристоре bt169d.
Регулятор мощности на тиристоре
Регулятор мощности на тиристоре
- VS1 — тиристор BT169D;
- VD1 — диод 1N4007;
- R1 — резистор 220k;
- R3 — резистор 1k;
- R4 — резистор 30k;
- R5 — резистор 470E;
- C1 — конденсатор 0,1mkF.
Резисторы R4 и R5 являются делителями напряжения. Они снижают сигнал, так как тиристор bt169d маломощный и очень чувствителен. Схема собирается аналогично регулятору на симисторе. Так как тиристор слабый, он не будет перегреваться. Поэтому радиатор охлаждения не нужен. Такую схему можно вмонтировать в небольшой коробок без розетки и соединить последовательно с проводом паяльника.
Регулятор мощности в маленьком корпусе
Регулятор мощности в маленьком корпусе
Схема на мощном тиристоре
Если в предыдущей схеме заменить тиристор bt169d на более мощный ку202н и убрать резистор R5, то выходная мощность регулятора повысится. Такой регулятор собирается с радиатором на тиристоре.
Схема на мощном тиристоре
Схема на мощном тиристоре
На микроконтроллере с индикацией
Простой регулятор мощности со световой индикацией можно сделать на микроконтроллере.
Схема регулятора на микроконтроллере ATmega851
Схема регулятора на микроконтроллере ATmega851
Подготовьте следующие компоненты для его сборки:
С помощью кнопок S3 и S4 будет меняться мощность и яркость светодиода. Схема собирается аналогично предыдущим.
Если вы хотите, чтобы прибор показывал процент выдаваемой мощности вместо простого светодиода, то используйте другую схему и соответствующие компоненты, включая числовой индикатор.
Схема регулятора на микроконтроллере PIC16F1823
Схема с числовой индикацией
Схему можно вмонтировать в розетку.
Регулятор на микроконтроллере в розетке
Регулятор на микроконтроллере в розетке
Проверка и регулировка схемы блока терморегулятора
Перед подключением блока к инструменту испытайте его.
- Возьмите собранную схему.
- Соедините её с сетевым проводом.
- Подключите лампу на 220 к плате и симистору или тиристору. В зависимости от вашей схемы.
- Сетевой провод воткните в розетку.
- Вращайте ручку переменного резистора. Лампа должна менять степень накаливания.
Схема с микроконтроллером проверяется аналогично. Только на цифровом индикаторе ещё будет отображаться процент выходной мощности.
Для регулировки схемы меняйте резисторы. Чем больше сопротивление, тем меньше мощность.
Нередко приходится ремонтировать или дорабатывать разные приборы, используя паяльник. От качества пайки зависит работа этих устройств. Если вы приобрели паяльник без регулятора мощности, то обязательно установите его. При постоянном перегреве пострадают не только электронные компоненты, но и ваш паяльник.
Источник