Регулятор для двигателя электромобиля

Электромобиль своими руками, общие принципы электромобиле строения

Создание электромобиля — это прекрасная альтернатива машине с бензиновым двигателем. Современные технологии позволяют находить новые пути решения проблем, связанных с затратами на автомобильное топливо.

Потратив деньги только на составляющие элементы будущего электромобиля, в дальнейшем можно прекрасно экономить на топливе.

Кроме того, электромоторы экологически безопасны в отличие от обычных двигателей, которые при переработке бензина выделяют углекислый газ.

Стоит заметить, что уже практически каждая автомобильная компания выпускает автомобили на электрической тяге или гибридные авто. К примеру электромобили Renault от одноименной компании.

Но цена таких экологически чистых средств передвижения остается еще недоступной для многих автолюбителей, поэтому вопрос создания электромобиля своими руками, особенно для стран СНГ еще очень актуален.

Содержание:

  1. Создаем электромобиль
  2. Базовая модель авто
  3. Электродвигатель
  4. Аккумулятор
  5. Система отопления
  6. Регулятор мощности
  7. Электромобили для детей
  8. Затраты

Создаем электромобиль

Для создания электромобиля своими руками необходимо приобрести:

  1. Базовая модель автомобиля;
  2. Электрический двигатель;
  3. Аккумуляторы, корпусы для них и зарядку;
  4. Электропедаль газа, а также регулятор напряжения и синхронизаторы.

Базовая модель авто

Под базовой моделью автомобиля подразумевается любая машина, которая будет взята за основу при изготовлении электромобиля.

Так как в основе любого электромобиля лежит его легкость, на которую прямо пропорционально влияют габариты, материал из которого он изготовлен, то желательно за основу брать не большие автомобили.

Согласитесь, трудно будет из Toyota Land Cruiser Prado сделать электромобиль.

Хорошо для таких целей подойдут отечественные ВАЗ –ы, знаменитые запорожцы, Славута, ОКА.

Из зарубежных Fiat 126 и другие малолитражки до 2000 года выпуска.

Можно сделать и свой оригинальный кузов, но сложность работ и их дороговизна многих отталкивает от данной идеи.

Электродвигатель

Электродвигатель выбирают в зависимости от размеров автомобиля и варианта его подключения в машине.

Если подключать его к коробке передач, то электродвигатель даже с небольшой мощностью (5 – 7 К Ватт) сможет сдвинуть автомобиль с места.

При подключении через ведущий мост понадобится более мощный электродвигатель. И чем выше габаритный вес машины, тем большей мощности должен быть будущий мотор.

Электродвигатель с минимальной мощностью, установленный на машине небольших габаритов, имеет скоростной лимит в 75-80 км/ч (при условии непосредственного подключения мотора к коробке передач).

Приобретая электродвигатель с большей мощностью, не нужно беспокоиться о дополнительных расходах электроэнергии. Эти затраты никак не зависят от пройденного километража и мощности электромотора.

ЧИТАЙТЕ ПО ТЕМЕ : Существуют ли автомобили с водородными двигателями?

Аккумулятор

При выборе аккумулятора лучше остановить свое внимание на энергоносители с литием.

Они могут использоваться без подзарядки в течение 5 часов беспрерывного движения на максимальной скорости в 80 км/ч.

Общий срок службы таких аккумуляторов в среднем достигает 5 лет. Литиевые энергоносители – это недешевый вариант.

Как менее дорогостоящую альтернативу можно выбрать свинцовые аккумуляторы. Такие энергоносители имеют меньший срок эксплуатации (в среднем 1-2 года) и разряжаются уже спустя час интенсивного движения.

Для того чтобы аккумуляторы не изнашивались так быстро, необходимо правильно подбирать их в соответствующем объеме.

Небольшие по размеру энергоносители выходят из строя раньше, так как они сильно изнашиваются, полностью разряжаясь в процессе движения. Поэтому лучше приобрести один большой аккумулятор с увеличенным ресурсом.

Система отопления

Если владелец электромобиля рассчитывает пользоваться им в холодное время года, необходимо продумать систему отопления.

Обогрев автомобиля с помощью электроэнергии двигателя-дело очень затратное. В этом случае зарядки аккумулятора не хватит даже на одну поездку.

Поэтому лучше установить бензиновый обогреватель или систему для подогрева кресел. Для всей остальной электротехники в салоне лучше приобрести отдельный энергоноситель.

Регулятор мощности

Очень важная деталь в электромобиле — это регулятор мощности, необходимый для регулировки тяги электродвигателя.

Самыми надежными считаются регуляторы американского производства. Ввиду ограниченности финансов можно приобрести его китайский аналог.

Регуляторы выбирают в зависимости от мощности силы тока. Для каждодневных поездок подойдет стандартный регулятор на 150 вольт.

Также в электромобиль на место снятого генератора нужно вмонтировать преобразователь, выполняющий аналогичные функции.

Электромобили для детей

Конечно, можно сделать и электромобиль для своего ребенка, но стоит ли овчинка выделки? Ведь сейчас уже во всю продаются детские автомобили на аккумуляторах, которые красивые (а это важно для ребенка) и обладают достойными эксплуатационными характеристиками.

Решать каждому, но наверное проще купить электромобиль для детей, чем делать самому.

Затраты

Если рассматривать общую стоимость всех комплектующих электромобиля, в среднем выходит от 5000 до 8000 долларов. Но вложения в переоборудованный транспорт окупаются буквально через полтора—два года.

Поэтому, если есть желание и возможность, можно попробовать самому сделать электромобиль. Такие конструкции — это будущее для многих транспортных средств.

Источник

Комплект для самодельного электромобиля мощностью 150 кВт (204 л.с.)

Очередной комплект для конверсии авто на электротягу. На сей раз это набор от компании UQM , который состоит из тягового электродвигателя, контролер инвертора и платы управления. Лазил по официальному сайту этой компании в поисках этого электродвигателя и не нашёл его. Возможно просто он очень древний, и ему самое место на металлоприёмке.

Тяговый электродвигатель DD45-500LWB трёхфазный синхронный с ротором на неодимовых магнитах. Он имеет жидкостное охлаждение и соответствующие штуцеры на корпусе. Клеммная коробка выпирает прямо из переднего щита и затрудняет процесс выпиливания для него переходной плиты на случай монтажа на коробку передач.

Основные характеристики двигателя:

  • Пиковый ток не более 500 А
  • Максимальная механическая мощность на валу 150 кВт (204 л.с.), постоянная непрерывная мощность 100 кВт (136 л.с.)
  • Максимальное напряжение 450 В
  • Пиковая потребляемая мощность не более 225 кВт
  • Минимальный расход охлаждающей жидкости 8 л/мин. (смесь воды и гликоля 50/50)
  • Длина 241 мм
  • Диаметр 405 мм
  • Вес 90 кг
  • Пиковый крутящий момент 650 Нм
  • Непрерывный крутящий момент 400 Нм
  • Максимальная скорость вращения 5000 об/мин
  • КПД в режиме непрерывной мощности 95%

Контроллер-инвертор

Характеристики контроллер-инвертора DD45-500L:

  • Номинальный входной диапазон постоянного напряжения от 340 до 450 В
  • Потребляемый пиковый ток не более 500 А
  • Тип управления PWM и продвижение фазы, 3-Phase BrushlessPM
  • Блок питания из трёх IGBT модулей (полумост)
  • Частота переключения 12,5 кГц
  • Потребляемая мощность в режиме ожидания 17 Вт (инвертор и микропроцессор)
  • Длина 380 мм
  • Ширина 365 мм
  • Высота 119 мм
  • Вес 15 кг

Плата управления

Плата управления:

  • Номинальное входное напряжение 12 В пост.
  • Диапазон входного напряжения питания от 8 до 15 В постоянного тока
  • Диапазон входного тока питания от 0,3 до 0,5 А

На ней написано, что нельзя использовать на транспортных средствах. Но если написано такое предостережение, значит надо попробовать, а вдруг прокатит.

Этот тяговый комплект считается низкоскоростным и высокомоментным. Вал электродвигателя можно напрямую соединять с карданным валом легкового автомобиля для конверсии на электротягу. При этом нужно принимать во внимание передаточное число редуктор-дифференциала заднего моста.

Так при передаточном числе 4 , крутящий момент на колёсах составит 2600 Нм, а скорость вращения достигнет 1250 об/мин, что при диаметре колеса 70 см эквивалентно максимальной скорости 165 км/ч.

Если конверсии подвергается внедорожник, то электродвигатель можно подкинуть на раздатку. Если грузовик, то лучше соединить с коробкой передач.

Источник

Выбор системы управления двигателем электромобиля

Рубрика: 9. Транспорт

Опубликовано в

Дата публикации: 01.11.2016

Статья просмотрена: 1814 раз

Библиографическое описание:

Варзаносов, П. В. Выбор системы управления двигателем электромобиля / П. В. Варзаносов. — Текст : непосредственный // Технические науки в России и за рубежом : материалы VI Междунар. науч. конф. (г. Москва, ноябрь 2016 г.). — Москва : Буки-Веди, 2016. — С. 47-51. — URL: https://moluch.ru/conf/tech/archive/228/11297/ (дата обращения: 30.03.2021).

Ключевые слова: электромобиль, система управления электроприводом, векторное управление

Электромобиль — современное новое экологичное средство передвижения. Несмотря на большую популярность бензиновых автомобилей, неизбежное будущее будет за машинами, не загрязняющими окружающую среду. И тенденция развития электротранспорта вполне логична. Растущие цены на бензин заставляют задумать об экономичности использования автомобилей с бензиновым двигателем, растущий уровень шума в городах, производимый машинами пагубно влияет на здоровье граждан. Эти и многие другие факторы привели к тому, что каждая ведущая автомобильная компания взялась за разработку собственного электромобиля [1]. Качественным отличием электромобиля от автомобиля является использование асинхронного либо синхронного трехфазного электродвигателя вместо традиционного бензинового. Управление мотором электродвигателя требует определенного быстродействия и создания необходимого момента на валу. Для этих целей используют различные системы управления электродвигателем. О выборе системы управления для электромобиля будет рассказано в этой статье.

Для того чтобы понять какое место занимает электродвигатель в машине и каким образом происходит управление, рассмотрим блок-схему перспективного электромобиля, представленную на рисунке 1 [3]. На схеме изображены основные элементы, а именно:

‒ питающая аккумуляторная батарея;

‒ упрощенная трансмиссия, оснащенная одноступенчатым редуктором;

‒ зарядное устройство на борту, чтобы обеспечивать возможность зарядки от бытовой розетки;

‒ электронная система управления элементами конструкции;

‒ вспомогательная батарея, которая используется в качестве питающего элемента климат-контроля, аудиосистемы, освещения.

‒ управление электромобилем [2].

C:\Users\Павел\YandexDisk\Скриншоты\2016-10-29_11-59-49.png

Рис. 1. Блок-схема электромобиля

Инвертор — это элемент, которые преобразует постоянный ток в трехфазный переменный, а также включает в себя систему управления двигателями. Чтобы понять, какие параметры влияют на систему управления, рассмотрим структуру инвертора, изображенную на рисунке 2 [3].

C:\Users\Павел\YandexDisk\Скриншоты\2016-10-29_13-04-56.png

Рис. 2. Блок-схема инвертора

Опыт различных компаний в создании и реализации электромобилей, накопленный к настоящему моменту позволяют выдвинуть определенные требования не только к самому электромобилю, но и к системе управления приводом автомобиля, в частности. Из всего ряда требований, выдвигаемых к электромобилю, выберем те, что относятся к системе управления двигателем и улучшают потребительские качества автомобиля, как средства передвижения.

Основные требования к системе управления электроприводом:

‒ плавное изменение скорости;

‒ стабильность автоматического поддержания установленной водителем скорости не ниже 10 %, данное требование позволяет энергетически выгодно использовать энергию в условиях городской эксплуатации;

‒ плавное управление тяговым и тормозным моментом при разгоне и торможении соответственно;

‒ автоматическое ограничение максимального момента и мощности на определенном уровне;

‒ ограничение зарядного тока при рекуперативном торможении, при определенном уровне заряда;

‒ возможность движения в режиме наката с последующим плавным разгоном или электрическим торможением;

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет скоростью и моментом двигателя за счет изменения частоты, напряжения, промежуточных токов в различных системах координат. Основные методы управления представлены на рисунке 3.

C:\Users\Павел\YandexDisk\Скриншоты\2016-10-29_15-35-37.png

Рис. 3. Методы управления [5].

Рассмотрим системы управления, наиболее часто использующиеся в различных частотных преобразователях.

Скалярное управление или как его еще называют частотное, так как этот метод управления электродвигателем переменного тока заключается в том, что поддерживается постоянное соотношение напряжение/частота во всем рабочем диапазоне скоростей, следственно изменяя частоту изменяется напряжение, а за ним и скорость вращения ротора. Это отношение вычисляется исходя из номинальных значений напряжения и частоты. Поддерживание этого соотношения на определенном уровне, можно поддерживать магнитный поток на определенном уровне. Существенным плюсом этой системы является простота ее реализации. Этот единственный плюс нивелируется такими недостатками как:

‒ Невозможно реализовать бездатчиковую систему управления асинхронным двигателем с набросом нагрузки, а система с датчиком скорости имеет низкую точность управления с нагрузкой, синхронный двигатель может вовсе выйти из синхронизма при увеличении момента выше предельного;

‒ Невозможно одновременно управлять и моментом, и скоростью двигателя;

Чаще всего скалярное управление используется в системах с большим диапазоном регулирования скорости. В нашем случае, данная система управления не подходит в виду того, что в электромобиле необходима точная регулировка скорости с нагрузкой на валу, а также в виду того, что скалярное управление не позволяет плавно изменять момент на валу.

Векторное управление, в отличие от скалярного, позволяет независимо и практически безынерционно управлять скоростью вращения и моментом на валу двигателя. Как показывает практика, недостаточно управлять напряжением и частотой, необходимо управлять и фазой, то есть контролировать значение и угол пространственного вектора [4]. Существующие методы управления моментом обычно классифицируют на две группы исходя из того, какие по своей структуре используются регуляторы, а именно: линейные и нелинейные (гистерезисные). В данной статье не подразумевается производить глубокий анализ всех систем управления в виду емкости теории по каждой из них, поэтому рассмотрим особенности, преимущества и недостатки векторных систем с управлением моментом.

Полеориентированное управление подразумевает отдельное управление как моментом, так и полем статора с помощью составляющих вектора поля статора. Все особенности этой системы связаны с указанием в программе правильных и точных характеристик двигателя, то есть использовать адекватную модель электропривода [6]. При использовании системы с прямым управлением моментом с пространственно-векторной модуляцией напряжения необходимо точно вычислять нагрузку на валу, линейность регулятора уменьшает пульсации момента, позволяет плавно запускать двигатель и уверенно работать на низких оборотах, но ухудшает динамические характеристики. Особенностью нелинейного регулятора с прямым управлением моментом заключается в том, что порядок включения транзисторных ключей определяется таблицей, в которой заключены различные состояния вектора напряжения. Характеристики системы зависят от ее настройки и частоты сравнения с вектором напряжения. Увеличение частоты приводит к увеличению стоимости соответственно. Характерными особенностями прямого управления является полное использование возможностей инвертора по напряжению, а также отличная динамика при работе с постоянным и ослабевающим полем.

Наиболее подходящей для системы управления электромобиля является система векторного управления с прямым управлением моментом с таблицей включения. Отразив в таблице все возможные состояния вектора и увеличив частоту итераций можно получить отличные и статические, и динамические характеристики, а также удовлетворить всем другим требованиям, выдвинутым к системе. На данном этапе развития электромобилей эта система управления однозначно приведет к существенному удорожанию системы управления, а следственно и всего электромобиля, но в дальнейшем, по мере увеличения популярности электрокаров, по прогнозам экспертов, цена снизится, а вот качество управления останется на высоком уровне.

  1. Варзаносов П. В.Анализ преимуществ и недостатков видов легкого электротранспорта / В сборнике: Технические науки: проблемы и перспективы Материалы IV Международной научной конференции. 2016. С. 89–91.
  2. http://autoleek.ru/dvigatel/jelektricheskij-dvigatel/ustrojstvo-jelektromobilja.html (дата обращения 29.10.2016)
  3. http://toshiba.semicon-storage.com/ru/application/automotive/ecology/hev-ev.html (дата обращения 29.10.2016)
  4. CristianBusca. Открытый контур управления низкой скорости для СДПМ в высоком динамическом приложении. — Ольборг, Дания.: Ольборг университет, 2010.
  5. http://engineering-solutions.ru/motorcontrol/vfd/ (дата обращения 29.10.2016)

6. Семыкина И. Ю., Завьялов В. М. Сравнительный анализ систем регулирования угловой скорости асинхронного электродвигателя / Вестник Кузбасского государственного технического университета 2005. № 6 (51). С. 61–66.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector