Меню

Преобразователи напряжения для фильтров

Как правильно выбрать фильтр для изолированных DC/DC-­преобразователей?

В силу своей природы все изолированные DC/DC-преобразователи содержат переключающие элементы, генерирующие электрические шумы и электромагнитные помехи (ЭМП), что в свою очередь оказывает влияние на такую характеристику конечного продукта, как электромагнитная совместимость (ЭМС). Паразитные индуктивности и емкости связаны с переключающим транзистором, приводящим в действие высокоиндуктивную нагрузку, в частности трансформатор, это означает, что резонансы здесь просто неизбежны. Даже примитивный DC/DC-преобразователь, действующий на невысокой рабочей частоте преобразования энергии всего в несколько сотен килогерц, может иметь шумовую характеристику, простирающуюся в частотном диапазоне до 20 МГц и выше. Высокочастотные помехи буквально пронизывают все на своем пути, перепрыгивая с дорожки на дорожку и с входа на выход преобразователя через емкости связи внутри его компонентов. Кроме того, пульсирующий поток энергии от входа к выходу вызывает пульсации напряжения на выходе и отраженный ток пульсации на входе. Этот пульсирующий ток приводит к генерированию различных резонансов напряжения в любых индуктивных элементах, таких как провода, дорожки печатной платы, переходные отверстия или контакты. Хотя пульсации входного тока и выходного напряжения могут быть уменьшены путем установки дополнительной входной и выходной емкости, здесь есть еще и синфазные шумы, которые сложнее фильтровать, поскольку они появляются на обеих клеммах входа и выхода и потому не «видны» для обычного LC-фильтра (рис. 1).

Синфазные шумы и помехи в изолированном DC/DC­преобразователе

Рис. 1. Синфазные шумы и помехи в изолированном DC/DC­-преобразователе [1]

Для создания источника питания с очень низкими пульсациями и малым уровнем шумов и помех, который мог бы использоваться для питания чувствительных каскадов, необходимы три отдельных решения в системе фильтрации, причем каждое из них обрабатывает отдельную часть спектра помехи.

Фильтр подавления пульсаций выходного напряжения

Этот фильтр уменьшает пульсации на выходе, вызванные импульсной передачей мощности через трансформатор. Каждый цикл переключения создает импульс тока, который должен поглощаться выходным конденсатором. В промежутке между циклами передачи мощности выходной конденсатор должен сам отдавать мощность в нагрузку. Напряжение на выходном конденсаторе увеличивается (заряд) и падает (разряд) с каждым циклом переключения, с характерной пилообразной формой (рис. 2).

Типичная форма пульсаций выходного напряжения и шумов DC/DC-преобразователя

Рис. 2. Типичная форма пульсаций выходного напряжения и шумов DC/DC-преобразователя

Поверх этого пилообразного сигнала (рис. 2) накладывается высокочастотный шум, вызываемый резонансными эффектами, связанными с переключением. Эти резонансы возникают каждый раз, когда силовой транзистор включается (в таком случае напряжение коллектор-эмиттер Vce быстро падает) или выключается (здесь напряжение коллектор-эмиттер Vce быстро нарастает). Вот почему, как мы видим на рис. 2, высокочастотный шум синхронизируется с пиками и спадами цикла переключения.

Фильтр подавления пульсаций входного напряжения

Каждый раз, когда включается силовой транзистор, входной ток преобразователя быстро увеличивается. Каждый раз, когда он выключается, отбор тока быстро спадает. Проблема здесь в том, что на пульсирующий ток накладывается определенный синфазный шум, который входные конденсаторы не могут отфильтровать. Утешает лишь то, что обычно уровни шумов на входной стороне ниже, чем на выходе, потому что основным источником питания для рассматриваемого DC/DC-преобразователя является источник с низким импедансом, поглощающий большую часть высокочастотного шума. Однако тут может оказать крайне негативное влияние распределенная индуктивность, а в целом — импеданс линии связи. Типичный входной отраженный сигнал в виде тока помехи напряжения переменного тока показан на рис. 3.

Пульсации входного тока

Рис. 3. Пульсации входного тока

Конденсатор, параллельный изолирующему барьеру

Третий важный момент в вопросе фильтрации заключается в том, что в свете рассматриваемой проблемы нужно помнить, что между входом и выходом трансформатор ведет себя как источник с высоким импедансом. Следовательно, коммутационные помехи (шум переключения) могут легко проходить через его емкость связи между обмотками. Такой шум можно уменьшить, обеспечив ему путь с низким импедансом обратно от выхода к входу. Решается это добавкой параллельно изолирующему барьеру конденсатора.

В качестве примера решения проблемы была поставлена задача создания изолированного источника питания с пульсациями и уровнем шумов и помех на выходе, не превышающими в сумме 5 мВ (п-п). Такие источники питания необходимы, например, для питания высокочувствительных малошумящих усилителей, измеряющих очень малые сигналы, или в приложениях обработки сигналов с высоким разрешением, например, таких как 24-разрядные аналого-цифровые преобразователи (АЦП).

В качестве иллюстрации практического подхода к фильтрации помех между входом и выходом был использован преобразователь типа R1ZX-0505 [3] компании RECOM. Особенность этого преобразователя заключается в том, что его выходное напряжение стабилизируется встроенным линейным (компенсационным) стабилизатором, чем достигается довольно-таки низкий уровень шума и пульсаций, обычно на уровне 30 мВ (п-п).

Первым шагом стало добавление конденсатора номинальной емкостью 2 нФ между контактами –Vout и +Vin R1ZX-0505. По сравнению с емкостью межобмоточной связи внутреннего трансформатора, составляющей примерно 100 пФ, конденсатор емкостью 2 нФ обеспечивает намного более низкий импеданс и, следовательно, более предпочтительный путь возврата тока. Уже только этот единственный компонент значительно уменьшил выходной шум. Но, снизив высокочастотные шумы, он, тем не менее, мало повлиял на уровень пульсаций по входу или выходу, что, впрочем, вполне естественно.

Вторым шагом, что также вполне естественно, была добавка конденсаторов по входу и выходу DC/DC-преобразователя. Для того чтобы уменьшить эффективное ESR (Effective Series Resistance, эффективное последовательное сопротивление), на входе и выходе параллельно подключены по два многослойных керамических конденсатора номинальной емкостью 10 мкФ MLCC. В результате уровень пульсаций на входе и выходе был значительно уменьшен, но высокий уровень синфазного шума на выходе все еще оставался. На рис. 4 показана форма выходного сигнала.

Форма выходного напряжения с конденсаторами подавления пульсаций на входе и выходе

Рис. 4. Форма выходного напряжения с конденсаторами подавления пульсаций на входе и выходе

На первый взгляд может показаться, что сейчас нам нужно только отфильтровать эти высокочастотные пики коммутационных помех, и результат будет достигнут. Однако от них не так просто избавиться, потому что они являются синфазными помехами, и добавление дополнительных конденсаторов или LC-фильтров не имело бы здесь никакого эффекта.

Схема электрическая принципиальная и внешний вид DC/DC­преобразователя с разработанным фильтром

Рис. 5. Схема электрическая принципиальная и внешний вид DC/DC­преобразователя с разработанным фильтром

Для решения проблемы синфазных помех были испробованы различные комбинации синфазных дросселей. В итоге было найдено оптимальное решение. На входе оказался необходимым синфазный дроссель на 50 мкГн с еще одной парой конденсаторов, включенный в топологии p-фильтра. Даже при высоком коэффициенте ослабления синфазного сигнала (CMRR) линейного стабилизатора входную пульсацию все еще требовалось держать под жестким контролем. Аналогичный p-фильтр синфазного режима был установлен и по выходу DC/DC-преобразователя, но оказалось, что здесь достаточно дросселя с меньшей индуктивностью, всего 10 мкГн. Результат представлен на рис. 5 и 6.

Где:
C1 = C2 = C4 = C5 — два MLCC-конденсатора, емкостью 10 мкФ, рабочее напряжение 10 В;
C3 — керамический конденсатор емкостью 2 нФ, рабочее напряжение 2 кВ;
L1 — синфазный дроссель WE 744212510, индуктивность 2Ѕ51 мкГн, RDC = 160 мОм, ток 300 мА (макс.);
L2 — синфазный дроссель WE 744242110, индуктивность 2Ѕ11 мкГн, RDC = 180 мОм, ток 300 мА (макс.).

Форма выходных сигналов (одинаковый масштаб) до и после установки фильтров

Рис. 6. Форма выходных сигналов (одинаковый масштаб) до и после установки фильтров

Заключение

При использовании синфазных фильтров суммарный уровень шумов, помех и пульсации на выходе при полной нагрузке составил порядка 2 мВ (п-п). Изменение любого компонента лишь ухудшало этот показатель или увеличивало габариты решения, а потому этот вариант в данном случае можно считать оптимальным. Полное решение в части фильтрации может показаться сложным, но оно необходимо для борьбы с тремя различными по своей природе источниками помех. В итоге была получена отличная малошумящая шина питания с суммарным уровнем шумов и помех, не превышающим –68 дБ, а поскольку требуемые для реализации данного решения компоненты достаточно малы, то при его практическом использовании на плате потребуется небольшое дополнительное пространство: в технике, как и в жизни, тоже ничто не достается даром.

Читайте также:  Хагер реле контроля напряжения

Источник



Входные и выходные фильтры для частотного преобразователя — назначение, принцип действия, подключение, особенности

Частотные преобразователи, как и многие другие электронные преобразователи с питанием от сети переменного тока с частотой 50 Гц, в силу одного лишь своего устройства искажают форму потребляемого тока: ток не линейно зависит от напряжения, поскольку выпрямитель на входе устройства стоит, как правило, обычный, то есть неуправляемый. Так же и выходные ток и напряжение преобразователя частоты — они тоже отличаются искаженной формой, наличием множества гармоник из-за работы ШИМ-инвертора.

В итоге, в процессе регулярного питания статора двигателя таким искаженным током, его изоляция быстрее стареет, подшипники портятся, шум двигателя усиливается, растет вероятность тепловых и электрических пробоев обмоток. А для сети, питающей частотный преобразователь, такое положение дел всегда чревато наличием помех, которые способны навредить другому оборудованию, питающемуся от этой же сети.

Входные и выходные фильтры для частотного преобразователя - назначение, принцип действия, подключение, особенности

Для избавления от выше описанных проблем, к частотным преобразователям и двигателям устанавливают дополнительно входные и выходные фильтры, спасающие от вредных факторов и саму питающую сеть, и питаемый данным частотным преобразователем двигатель.

Входные фильтры призваны подавлять помехи генерируемые выпрямителем и ШИМ-инвертором преобразователя частоты, защищая таким образом сеть, а выходные фильтры — защищают сам двигатель от помех генерируемых ШИМ-инвертором частотного преобразователя. Входные фильтры — это дроссели и ЭМИ-фильтры, а выходные — это фильтры синфазные, моторные дроссели, синус-фильтры и фильтры dU/dt.

Входные и выходные фильтры

Сетевой дроссель

Дроссель, включаемый между сетью и частотным преобразователем, — это сетевой дроссель, он служит своего рода буфером. Сетевой дроссель не пускает от преобразователя частоты в сеть высшие гармоники (250, 350, 550 Гц и далее), одновременно защищая сам преобразователь от скачков напряжения в сети, от токовых бросков во время переходных процессов в преобразователе частоты и т. д.

Падение напряжения на таком дросселе составляет порядка 2%, что оптимально для нормальной работы дросселя в сочетании с преобразователем частоты без функции регенерации электроэнергии в момент торможения двигателя.

Так, сетевые дроссели устанавливают между сетью и преобразователем частоты при следующих условиях: при наличии помех в сети (по разным причинам); при перекосе фаз; при питании от сравнительно мощного (до 10 раз) трансформатора; если от одного источника питаются несколько преобразователей частоты; если к сети подключены конденсаторы установки КРМ.

Сетевой дроссель обеспечивает:

защиту преобразователя частоты от скачков сетевого напряжения и перекоса фаз;

защиту цепей от больших токов КЗ в двигателе;

продление срока службы преобразователя частоты.

ЭМИ-фильтр

В силу того, что двигатель, питаемый от преобразователя частоты, является по сути переменной нагрузкой, его работа связана с неминуемым появлением в сетевом напряжении высокочастотных импульсов, флуктуаций, способствующих генерации паразитного электромагнитного излучения от силовых кабелей, особенно если данные кабели отличаются значительной протяженностью. Такие излучения могут повредить некоторые приборы, установленные неподалеку.

Для устранения излучений, для обеспечения электромагнитной совместимости с чувствительными к излучениям приборами, как раз и необходим фильтр ЭМИ.

Трехфазный фильтр электромагнитных излучений призван подавить помехи в диапазоне от 150 кГц до 30 МГц по принципу клетки Фарадея. ЭМИ-фильтр присоединяется по возможности как можно ближе к входу преобразователя частоты, чтобы обеспечить окружающим приборам надежную защиту от всех помех, создаваемых ШИМ-инвртором. Иногда ЭМИ-фильтр уже встроен в преобразователь частоты.

Фильтр dU/dt

Так называемый фильтр dU/dt — это трехфазный Г-образный фильтр нижних частот, состоящий из цепочек индуктивностей и конденсаторов. Такой фильтр еще называют моторным дросселем, и часто он может вообще не иметь конденсаторов, а индуктивности при этом будут значительными. Параметры фильтра таковы, что все помехи на частотах выше частоты переключения ключей ШИМ-инвертора частотного преобразователя подавляются.

Если в составе фильтра имеются конденсаторы, то величина емкости каждого из них находится в пределах нескольких десятков нанофарад, а величины индуктивностей — до нескольких сотен микрогенри. В итоге данный фильтр понижает пиковое напряжение и импульсы на клеммах трехфазного двигателя до 500 В/мкс, что спасает обмотки статора от пробоя.

Итак, если привод испытывает частые рекуперативные торможения, изначально не приспособлен для работы с частотным преобразователем, имеет низкий класс изоляции или короткий моторный кабель, установлен в агрессивной рабочей среде или используется при напряжении 690 вольт, — фильтр dU/dt между частотным преобразователем и двигателем рекомендуется установить.

Даже несмотря на то, что напряжение, подаваемое на двигатель от преобразователя частоты, может иметь форму двуполярных прямоугольных импульсов, а не форму чистой синусоиды, фильтр dU/dt (со своими небольшими емкостью и индуктивностью) так действует на ток, что делает его в обмотках двигателя почти точно синусоидальным. Важно понимать, что если использовать фильтр dU/dt на частоте выше его номинала, то фильтр станет испытывать перегрев, то есть принесет лишние потери.

Синус-фильтр (синусный фильтр)

Синус-фильтр (синусный фильтр)

Синусный фильтр — подобие моторного дросселя или dU/dt-фильтра, отличие однако заключается в том, что емкости и индуктивности имеют здесь большие величины, такие, что частота среза составляет менее половины частоты коммутации ключей ШИМ-инвертора. Таким образом достигается лучшее сглаживание помех высоких частот, а форма напряжения на обмотках двигателя и форма тока в них, оказывается сильно ближе к идеальной синусоидальной.

Емкости конденсаторов в синус-фильтре измеряются десятками и сотнями микрофарад, а индуктивности катушек — единицами и десятками миллигенри. Синусный фильтр отличается поэтому крупным размером, по сравнению с габаритами традиционного частотного преобразователя.

Применение синусного фильтра позволяет использовать совместно с частотным преобразователем даже двигатель, изначально (по спецификации) не предназначенный для работы с частотным преобразователем по причине слабой изоляции. При этом не будет наблюдаться ни повышенного шума, ни быстрого износа подшипников, ни перегрева обмоток высокочастотными токами.

Появляется возможность без вреда использовать длинный кабель, соединяющий двигатель с преобразователем частоты, когда они расположены далеко друг от друга, при этом исключаются импульсные отражения в кабеле, могущие привести к потерям в форме тепла в преобразователе частоты.

Итак, синусный фильтр рекомендуется устанавливать в условиях, когда:

необходимо снизить шум; если двигатель имеет слабую изоляцию;

испытывает частые рекуперативные торможения;

работает в условиях агрессивной среды; подключен кабелем длиной более 150 метров;

должен работать долго без обслуживания;

в процессе работы двигателя напряжение пошагово повышается;

номинальное рабочее напряжение двигателя составляет 690 вольт.

При этом следует помнить, что синусный фильтр нельзя использовать с частотой ниже его паспортного номинала (максимально допустимое отклонение частоты вниз — 20%), так что в настройках частотного преобразователя необходимо предварительно задать ограничение частоты снизу. А частоту выше 70 Гц нужно применять с большой осторожностью, и в настройках преобразователя, если это возможно, задать предварительно величины емкости и индуктивности подключаемого синусного фильтра.

Читайте также:  Измеряем напряжения блока питания компьютера

Помните, что сам фильтр может шуметь и выделять ощутимое количество тела, ведь на нем даже при номинальной нагрузке падает порядка 30 вольт, поэтому фильтр следует устанавливать с соблюдением надлежащих условий охлаждения.

Все дроссели и фильтры необходимо соединять последовательно с двигателем экранированным кабелем по возможности минимальной длины. Так, для двигателя мощностью 7,5 кВт максимальная длина экранированного кабеля не должна превышать 2 метров.

Синфазный фильтр — сердечник

Синфазный фильтр - сердечник

Синфазные фильтры предназначены для подавления высокочастотных помех. Данный фильтр представляют собой дифференциальный трансформатор на ферритовом кольце (точнее — на овале), обмотками которого являются непосредственно трехфазные провода, соединяющие двигатель с частотным преобразователем.

Данный фильтр служит для снижения синфазных токов, порождаемых разрядами в подшипниках мотора. Как следствие, синфазный фильтр снижает возможные электромагнитные излучения от моторного кабеля, особенно если кабель этот не экранированный. Провода трех фаз проходят через окно сердечника, а защитный провод заземления остается снаружи.

Сердечник фиксируется на кабеле хомутом для защиты от разрушительного воздействия вибрации на феррит (во время работы двигателя ферритовый сердечник вибрирует). Фильтр лучше всего устанавливать на кабель со стороны клемм преобразователя частоты. Если сердечник в процессе эксплуатации нагревается более чем до 70°C, то это говорит о насыщении феррита, значит нужно добавить сердечников либо укоротить кабель. Несколько параллельных трехфазных кабелей лучше оснастить каждый — своим сердечником.

Источник

Фильтры для частотных преобразователей – диапазон регулирования

Сетевой фильтр для частотного преобразователя

При работе двигателя нередко рождаются нежелательные явления, которые именуют «высшими гармониками». Они негативно сказываются на кабельных линиях и оборудовании электросети, приводят к нестабильной работе оборудования. При этом получается малоэффективное использование энергии, быстрое старение изоляции, сниженный процесс передачи и генерации.

Для решения данной проблемы необходимо выполнять требования по электромагнитной совместимости (ЭМС), выполнение которых позволит обеспечить устойчивость технических средств к негативным воздействиям. В статье сделан небольшой экскурс в область электротехники, связанной с фильтрацией входных и выходных сигналов частотного преобразователя (ПЧ) и повышением эксплуатационных характеристик двигателей.

Что такое электромагнитные шумы?

Они возникают буквально от всех металлических антенн, собирающих и излучающих дезориентирующие энергетические волны. И сотовые телефоны, естественно, тоже наводят магнитоэлектрические волны, поэтому при взлете/посадке самолета стюардессы просят отключать аппаратуру.

Шумы разделяются по типу источников их возникновения, по спектру и характерным признакам. Электрическими и магнитными полями разных источников из-за наличия коммутационных связей создаютсяв кабельной линии ненужные разности потенциалов, нарастающие на полезные волны.

Возникающие в проводах помехи называются противофазными либо синфазными. Последние (они также называются несимметричными, продольными) образуются между кабелем и землей, и действуют на изоляционные свойства кабеля.

Их значительная часть образуется от коммутации электрических цепей, непреднамеренной взаимной индуктивности и паразитной емкости. И небольшое количество от магнитного излучения, которое распространяется в пространстве по мере изменения параметров сети во времени.

Наиболее распространенными шумовыми источниками является индуктивная аппаратура (содержащая катушки), такие, как асинхронные двигатели (АД), реле, генераторы и т. д. Шум может вступать в «конфликт» с некоторыми устройствами, индуцируя электротоки в их цепях, вызывая сбои в рабочем процессе.

Как шумы связаны с частотным преобразователем?

Электроток является наиболее важной частью во время преобразования. Это кровь, протекающая по артериям (проводам) для питания оборудования. Конденсаторы отвечают за фильтрацию импульсов тока. Именно ток обеспечивает нужный уровень Uвых. Мощность зависит от текущей нагрузки. Паразитная емкость и взаимная индуктивность приводит к образованию потерь. Эта концепция перекрестных преткновений распространяется по всей цепи.

Преобразователи для асинхронных двигателей с динамически изменяющимся рабочим режимом, имея много положительного, обладают рядом недостатков — их использование приводит к возникновению интенсивных электромагнитных помех и наводок, которые формируются в аппаратах, связанных с ними по сети либо расположенными вблизи и подвергающимися излучению. Зачастую АД размещают удаленно от инвертора и соединяют с ним удлинённым проводом, что создаёт угрожающие предпосылки выхода электродвигателя из строя.

Наверняка кому-то приходилось столкнуться с импульсами от энкодера электродвигателя на контроллере либо с выдачей ошибки при использовании длинных проводов – все эти проблемы, так или иначе, связаны с совместимостью электронной техники.

Фильтры частотных преобразователей

Для повышения качества управления, ослабления отрицательного влияния используется фильтрующее устройство, представляющее собой элемент с нелинейной функцией. Задаётся частотный диапазон, вне которого реакция начинает ослабевать. С точки зрения электроники, этот термин довольно часто используется при обработке сигналов. Им определяется ограничительные условия для токовых импульсов. Основная функция частотника заключается в генерировании полезных, уменьшении нежелательных колебаний до уровня, установленного в соответствующих стандартах.

Сетевой фильтр для частотного преобразователя

Существует два вида приборов в зависимости от места расположения в цепи, именуемые как входной и выходной. «Вход» и «выход» означает, что фильтрующие аппараты подсоединены к входной и выходной стороне преобразователя. Отличие между ними определяется их применением.

Входные служат для уменьшения шумовв кабельной линии электроснабжения. Они также влияют на устройства, подключенные к той же сети. Выходные предназначаются для помехоподавления для аппаратов, расположенныхрядом с инвертором и использующих одну и ту же землю.

Назначение фильтров для частотного преобразователя

В процессе функционирования частотный преобразователь – асинхронный двигатель, создаются нежелательные высшие гармоники, которые в совокупности с индуктивностью проводов приводят к ослаблению помехоустойчивости системы. По причине генерирования излучения электронная техника начинает неправильно работать. Активно функционирующие сетевые фильтры обеспечивают электромагнитную совместимость систем регулирования АД, спроектированных на основе ПЧ. К некоторому оборудованию предъявляются повышенные требования на предмет помехоустойчивости.

3-з фазные фильтры для частотника позволяют максимально снижать степень кондуктивных помех в широком частотном диапазоне. В итоге электропривод хорошо вписывается в единую сеть, где задействовано несколько оборудований. ЭМС-фильтры надлежит размещать на достаточно близком расстоянии к силовым входам/выходам преобразователя частоты , в виду зависимости уровня помех от длины и способа укладки силового кабеля. В отдельных случаях их устанавливают непосредственно корпус преобразователя частоты.

Фильтры необходимы для:

  • помехоустойчивости;
  • сглаживания амплитудного спектра, чтобы получить чистый электроток;
  • выбора частотных диапазонов и восстановления данных.

Все модели векторных частотных преобразователей снабжены сетевой фильтрацией. Наличие фильтрующих аппаратов обеспечивает необходимый уровень ЭМС для работы системы. Встроенное устройство позволяетделать минимальными наводки ишумы в электронной технике, и, следовательно,удовлетворяет требованиям по совместимости.

Отсутствие функции фильтрации в частотном преобразователе часто приводит к совокупительному нагреву питающего трансформатора, импульсным изменениям, искажениям формы питающей кривой, что вызывает сбой работы техники.

1. Тококомпенсирующие сетевые дроссели

Аппараты, абсолютно необходимые для обеспечения стабильности работы сложной электронной техники. Между преобразователем частоты и сетью питания монтируется буфер с целью защиты линии от высших гармоник. Он способен сдерживать этиколебания волн,частота которых больше550 Гц. При остановке мощной асинхроннойдвигательной системы, может возникнуть скачок напряжения. В этот момент срабатывает защита.

Читайте также:  При электросварке при напряжении 30в сила тока

Тококомпенсирующие сетевые дроссели

Сетевой дроссель рекомендовано устанавливать для подавления высокочастотных гармоник и корректировки коэффициента системы. Важность установки состоит в том, чтобы уменьшить потери в статорах электродвигателя, нежелательный нагрев агрегата.

Сетевые дроссели обладают достоинствами. Правильно выбранная индуктивность устройства позволяет обеспечить:

  • защиту преобразователя частоты от перепадов напряжения и асимметричности фаз;
  • скорость роста тока КЗ понижается;
  • увеличивается длительность «жизни» конденсаторов.

Можно представить конденсатор как блокиратор. Поэтому в зависимости от способа подключения конденсатора, он может выступать в качестве:

  • низкочастотного, если подключить его параллельно к источнику;
  • высокочастотного, если подключить последовательно с источником.

В практических схемах может потребоваться резистор, чтобы ограничить электронный поток и достичь правильного отсечения частот.

2. Фильтры электромагнитного излучения (ЭМИ)

Вы используете ситечко для чая во время приготовления чая? Оно используются для предотвращения «нежелательных! элементов от входа в вашу систему. В электрических цепях есть множество подобных нежелательных явлений, которые появляются в различных частотах.

Электропривод в составе преобразователя частоты и электродвигателя, считается переменной нагрузкой. Эти аппараты и индуктивность проводоввызывают зарождение высокочастотных флуктуаций напряжения и, как следствие, электромагнитного излучения кабелей, что негативно сказывается на функционировании остальных устройств.

Каждому проводу присуще паразитная емкость. Она способствует стеканию на землю высокочастотных токов, которые вызываются токами утечки. Последние графически выглядят в виде коротких остроконечных импульсов. В электроустановке без выравнивания потенциала данные пики токов утечки вызывают всплески напряжения. Помимо этого, вокруг токов утечки образуются высокочастотные магнитные поля, индуцирующие шумы в петлях кабеля.

ЭМИ требуются для соблюдения электромагнитной совместимости при монтаже преобразователя частоты в местах, неблагоприятных с точки зрения появления сетевых всплесков. Трёхфазные ЭМИ способны существенно уменьшать помехи в заданном частотном диапазоне. Некоторые частотные преобразователи производятся со встроенными фильтрующими блоком, подавляющим паразитные колебания сети.

3. Дроссель du/dt

Это индуктор с двумя (или больше) обмотками, в котором течёт ток в противоположных направлениях. Использование этого устройства, состоящего из дросселя и конденсатора, имеет ряд преимуществ. Он более надежен и может применяться при самых низких рабочих температурах. Все это позволяет увеличить срок службы электродвигателя. Низкая индуктивность и малый размер также являются его ключевыми особенностями.

Сетевой фильтр

Применяются в тех случаях, когда:

  • от частотного преобразователя к электродвигателю протянуты кабели длиной до 15 м;
  • есть вероятность повреждение изоляции обмоток двигателя из-за пульсирующих скачков напряжения;
  • применяются старые агрегаты;
  • в системах с частым торможением;
  • агрессивность среды.

На довольно высоких частотах падение напряжения практически равняется нулю, и конденсатор ведет себя как разомкнутая цепь. Фильтпресс изготовлен в виде делителя напряжения с резистором и конденсатором. Он, по сути, применяется для того, чтобы уменьшить пропускную способность, нестабильность и исправить скорость нарастания Uвых.

Говоря простыми словами, обычный дроссель исходит от слова «душить». И до сих пор используется, потому что довольно точно описывает своё предназначение. Подумайте, как сжимается «кулак» вокруг провода, чтобы препятствовать резким изменениям тока.

4. Синусоидальные фильтры

Переменный электроток представляет собой волну, некую комбинацию синуса и косинуса. Различные синусоидальные волны имеют разные частоты. Если знать, какие частоты присутствуют, какие нужно передать или удалить, то в результате можно получить сочетание «полезных» волн, то есть без шума. Это помогает в некоторой степени очистить токовый сигнал. Синусоидальный фильтр – это комбинация емкостных и индуктивных элементов.

Одной из мер по обеспечению электромагнитной совместимости является применение синусоидального аппарата, это бывает необходимо:

  • при групповом приводе с одним преобразователем;
  • при эксплуатации с минимумом коммутационных соединений с кабелями (без экрана) электродвигателя (к примеру, подключение шлейфным способом или подвесным энергетическим подводом);
  • для уменьшения потерь на длинных кабелях.

Назначение устройства заключается в предотвращении повреждения изоляторов обмотки электродвигателя. Благодаря почти полному поглощению высоких импульсов, на выходе напряжение принимает синусную форму. Его правильная установка – важный аспект для уменьшения уровня помех в сети и, следовательно, излучения. Это позволяет применять длинный провод и способствует снижению шумового уровня. Низкая индуктивность также означает меньший размер и более низкую цену. Устройства сконструированы по методу на фильтрации dU/dt с отличием в большую сторону по величине номинала элементов.

5. Высокочастотные фильтры синфазных помех

Экранированным кабелям свойственна паразитная емкость. При неблагоприятных обстоятельствах экранирование выходной кабельной линии приводит к ослаблению помехоустойчивости из-за образующихся токов утечки с их высокочастотными составляющими. Удаление нежелательных явлений осуществляется с помощью фильтрации на выходе. Некоторые электронные приборы чувствительны к наличию гармоник в напряжении питания, поэтому требуют регулирования мощности для нормальной работы.

Если искаженная синусоида напряжения ведет себя как ряд гармонических сигналов добавленных к основной частоте, то фильтрующая схема позволяет пропускать только основную частоту, блокируя ненужные высшие гармоники. Входной аппарат фильтрации предназначается для подавления высокочастотного шума.

Приборы отличаются от выше рассмотренных более сложной конструкцией. Важнейшим способом снижения шумов служит соответствие требуемым правилам заземления в электрическом шкафу.

Как правильно выбрать входной и выходной фильтр ЭМС

Их отличительные достоинства заключаются в высоком помехопоглащающем коэффициенте. ЭМС применяются в устройствах с импульсными источниками питания. Стоит придерживаться требований инструкций по конкретной схеме управления асинхронных двигателей. Существуют общие принципы, определяющие правильность выбора.

Необходимо обратить внимание, что выбранная модель должна соответствовать:

  • параметрам частотного преобразователя и сети питания;
  • уровню снижения помех до требуемых пределов;
  • частотным параметрам электрических цепей и установок;
  • особенностям эксплуатации электрооборудования;
  • возможностямэлектромонтажа модели в систему управления и т. д.

Самый простой способ повысить качество электрической сети – это предпринять меры на стадии проектирования. Самое интересное, что при необоснованном отклонении от проектных решений вина полностью ложится на плечи электромонтажников.

Правильное решение по выбору типа частотного преобразователя, в совокупности с подходящей фильтровой аппаратурой, предотвращает возникновение большинства проблем для функционирования силового привода.

Обеспечение хорошей совместимости получается при правильном подборе параметров компонентов. Некорректное применение приборов может увеличить уровень помех. В реалии, входные и выходные фильтры иногда негативно влияют друг на друга. Это, особенно, касается случая, когда входной прибор встроен в частотный преобразователь. Выбор фильтрующего прибора к конкретному преобразователю осуществляется по техническим параметрам и лучше по компетентной рекомендации специалиста. Профессиональная консультация, возможно, принесёт вам существенную выгоду, так как дорогостоящей аппаратуре на самом деле всегда подбирается качественный недорогой аналог. Либо же она не действует в нужном частотном диапазоне.

Заключение

Электромагнитное воздействие влияет на оборудование, главным образом, на высоких частотах. Это означает, что правильная работа системы будет достигнута лишь тогда, когда соблюдаются правила электромонтажа и производственно-технические требования, а также выполняются требования к высокочастотному оборудованию (к примеру, экранирование, заземление, фильтрация).

Стоит заметить, что меры по повышению помехоустойчивости – это комплекс мероприятий. Использование лишь одних фильтров не решит проблему. Однако это наиболее эффективный способ удаления либо довольно значимого уменьшения вредоносных помех для нормальной электромагнитной совместимости электронной техники. Нельзя забывать также о том, что подходит или нет конкретная модель для решения задачи – определяется «на месте» либо путём эксперимента и тестирования.

Источник

Adblock
detector