Полная мощность синусоидальной цепи равна

Мощность в цепи синусоидального тока. Активная, реактивная и полная мощности. Единицы их измерения. Треугольник мощностей

Энергетические процессы в цепях переменного тока являются функциями времени. Рассмотрим мощности отдельных участков цепи с последовательным соединением R, L, C (рис. 2.15), для чего допустим, что к ней приложено напряжение и протекает ток .

Мощность в активном сопротивлении

.

Учитывая RI = U R, а также равенство U R = Ucosφ, полученное из треугольника напряжений, будем иметь

.

Рис. 2.15. Схема последовательной цепи

Из этого выражения видно:

1) мгновенная мощность в активном сопротивлении всегда положительна (т.е. всегда потребляется);

2) мгновенная мощность колеблется с двойной частотой около своего среднего значения, равного U I cos φ.

Кривая изменения мощности на активном сопротивлении показана на рис. 2.16.

Рис. 2.16. Мгновенная мощность на активном сопротивлении

Мощность в индуктивности

.

Но , следовательно, . Кривые тока и мощности показаны на рис. 2.17.

Из полученного выражения видно, что мгновенная мощность в индуктивности колеблется с двойной частотой около своего нулевого значения. Следовательно, каждые четверть периода энергия поступает в магнитное поле катушки, чтобы в последующие четверть периода вернуться полностью в источник питания, т.е. идеальная катушка индуктивности энергии не потребляет.

Рис. 2.17. Кривые тока и мощности на индуктивности

Мощность в емкости

.

Кривые тока и мощности показаны на рис. 2.18.

Рис. 2.18. Кривые тока и мощности на емкости

Эти выражения показывают, что в конденсаторе емкостью С энергия не потребляется. Так же, как и в индуктивности, она колеблется около нулевого значения с двойной частотой, поступая от источника и возвращаясь к нему. Следует отметить, что мощности в индуктивности и в емкости колеблются в противофазе. Это говорит о том, что магнитное и электрическое поле способны обмениваться запасами энергии друг с другом.

В соответствии с этим суммарная мгновенная мощность, накапливаемая в индуктивности и емкости, будет равна

.

Этой мощностью, называемой мгновенной реактивной мощностью, реактивные элементы обмениваются не между собой, а с источником питания.

При , т.е. в режиме резонанса напряжений, эта реактивная мощность равна нулю и катушка и конденсатор обмениваются энергией только между собой, на получая ничего от источника и не возвращая в него.

Определим мгновенную полную мощность.

Если к участку цепи приложено напряжение u = U m×sin(ω×t + φ) и по нему протекает ток i = I m×sin ω×t, то мгновенная мощность, поступающая в цепь, будет равна

. (2.34)

Она состоит из двух слагающих: постоянной величины , равной постоянной составляющей мгновенной мощности активного сопротивления, и гармонической, имеющей двойную частоту.

.

Эта мощность выделяется в приемниках электрической энергии. Множитель cos φ носит наименование коэффициента мощности.

;

.

Согласно (2.34) мгновенная мощность колеблется с двойной частотой 2ω относительно средней мощности P = U I cos φ.

На рис. 2.19 показаны кривые изменения во времени тока, напряжения и мощности цепи.

Когда ток и напряжение имеют одинаковый знак, мгновенная мощность положительна, и энергия поступает от источника к приемнику, где преобразуется в тепло (на активном сопротивлении) и запасается в магнитном поле катушки индуктивности или в электрическом поле конденсатора. Когда ток и напряжение имеют разные знаки, мгновенная мощность отрицательна, и энергия возвращается от приемника к источнику.

На практике пользуются понятиями активной, реактивной и полной мощности.

Рис. 2.19. Кривые изменения тока, напряжения и мощности

Под активной мощностью понимают среднее значение полной мгновенной мощности за период

Активная мощность никогда не бывает отрицательной, так как ею характеризуется потребление энергии цепью. Единицей измерения активной мощности принят ватт (Вт).

Реактивная мощность (Q) характеризует ту часть энергии, которой цепь обменивается с источником без потребления. Ее величина определяется амплитудным значением мгновенной реактивной мощности, выражение которой было ранее получено в виде U I sinφ sin 2ωt. Следовательно,

Реактивную мощность принято измерять в вольт-амперах реактивных (ВАр). Она положительна при отстающем токе (когда φ > 0) и отрицательна при опережающем (когда φ Реклама

Полезная работа, совершаемая элементами цепи, характеризуется активной мощностью P. Однако эта мощность зависит от угла сдвига фаз φ, значение которого может меняться в зависимости от режима работы цепи. Следовательно, активная мощность не может быть той расчетной величиной, на которую можно приводить расчет электрических машин, аппаратов и других устройств. Поэтому их характеризуют полной мощностью

являющейся произведением действующих значений тока и напряжения. Полная мощность равна наибольшему значению активной мощности, которую можно получить при заданных токе и напряжении. Единицей измерения полной мощности принят вольт-ампер (ВА).

Активная, реактивная и полная мощности связаны между собой соотношениями прямоугольного треугольника, называемого треугольником мощностей (рис. 2.20):

;

Рис. 2.20. Треугольник мощностей

Необходимо обратить внимание на особенности в понимании активной, реактивной и полной мощностей.

Активная мощность определяет ту работу, которая в среднем совершается (передается) в электрической цепи. Полная и реактивная мощности не определяют ни совершаемой работы, ни передаваемой энергии. Полная мощность, часто называемая кажущейся, является пределом, которого следует добиваться в целях повышения КПД. Реактивная мощность является условной величиной, характеризующей энергию электрических и магнитных полей, имеющихся в цепи.

Запишем мощность в комплексной форме

Символическое представление действующих значений тока I и напряжения U позволяет легко и просто найти активную реактивную и полную мощности. Для этого необходимо взять произведение комплексного напряжения U и комплекса , сопряженного с комплексным током I

.

Из этого выражения видно, что вещественная часть комплексной мощности равна активной мощности, мнимая часть – реактивной. Модуль комплексной мощности S равен полной мощности S.

; ;

;

.

Источник

№28 Энергия и мощность в цепи синусоидального тока.

Пусть на некотором участке цепи, напряжение на зажимах которого равно u, током i за время dt переносится электрический заряд dq = idt. Затрачиваемая источником энергия равна при этом dw = udq = uidt, а развиваемая мощность p = dw/dt = ui. Эта величина называется мгновенной мощностью и определяет скорость и направление движения энергии на рассматриваемом участке. Если энергия поступает в цепь и накапливается в ней, функция w(t) возрастает, и мгновенная мощность положительна как производная возрастающей функции. Напряжение u и ток i в эти моменты времени имеют одинаковые знаки. Процесс накопления энергии в цепи наблюдается, например, при заряде конденсатора. В те моменты времени, когда u и i имеют разные знаки, мгновенная мощность отрицательна, функция w(t), определяющая энергию, поступающую в цепь, убывает, так как только убывающая функция имеет отрицательную производную. Убыль энергии в электрической цепи означает возврат ее источнику. Такая ситуация возникает при разряде конденсатора.

Энергия, поступающая в цепь, может не возвращаться к источнику, а необратимо преобразовываться в тепло или механическую работу. Количество этой энергии определяется законом Джоуля–Ленца и за время, равное периоду синусоидального тока, равно:

Эта величина, отнесенная ко времени Т, определяет среднее значение мгновенной мощности за период и называется активной мощностью:

Физически активная мощность представляет собой энергию, выделяющуюся в виде тепла или механической работы в единицу времени.

Пусть ток и напряжение на входе произвольного пассивного двухполюсника описываются выражениями:

Подставляя их в формулу ранее и интегрируя, получаем:

Используя соотношения между сторонами в треугольниках напряжений и токов, сопротивлений и проводимостей, можно написать цепочку формул для вычисления активной мощности:

Рассмотрим теперь энергетические процессы, происходящие в отдельно взятых элементах.

В активном сопротивлении напряжение и ток совпадают по фазе (φ = 0); в любой момент времени их знаки одинаковы, мгновенная мощность положительна, т.е. в него постоянно поступает энергия электрического тока, преобразуясь в тепловую или механическую. Активная мощность равна:

В реактивных элементах угол сдвига фаз по величине равен 90°. В индуктивности, при отстающем токе, он положителен, в емкости, при опережающем токе, – отрицателен. Подставляя φ = +- 90° в выражение напряжения на входе цепи, получим u = Um sin (ωt+-90°) = +-Um cos(ωt). При таком напряжении мгновенная мощность колеблется с двойной частотой, изменяясь по синусоидальному закону:

т.е. дважды за полпериода меняет знак. Подстановка этого выражения приводит к результату: P = 0. Равенство нулю активной мощности означает, что в реактивных элементах не происходит необратимого преобразования электромагнитной энергии в тепловую и механическую.

Можно показать, что в индуктивности в течение первой четверти периода, при возрастании тока от нуля до Im, в магнитном поле индуктивности накапливается энергия WM=(LI2m)/2. В течение следующей четверти периода, когда ток уменьшается до нуля, эта энергия из магнитного поля возвращается во внешнюю цепь.

В емкости – аналогично: в течение одной четверти периода, когда напряжение на обкладках конденсатора возрастает от нуля до Um, конденсатор заряжается, в его электрическом поле накапливается энергия: Wэ=(СU2m)/2. В следующую четверть периода конденсатор разряжается, его напряжение уменьшается до нуля, и накопленная в электрическом поле энергия возвращается в цепь. Энергию, которой электрическое поле конденсатора и магнитное поле катушки обмениваются с цепью, будем называть энергией обмена.

Для энергии магнитного поля WM и электрического поля WЭ можно записать следующие формулы:

Величины QL=I2XL и QC=I2XC имеющие размерность мощности, называются соответственно реактивной мощностью индуктивности и реактивной мощностью емкости. К работе, совершаемой переменным током, они отношения не имеют, а являются величинами, пропорциональными энергии магнитного и электрического полей: QL=ωWM, QC=ωWЭ.

В цепи, содержащей одновременно и индуктивность и емкость, колебания энергии происходят таким образом, что в те моменты времени, когда магнитное поле индуктивности накапливает энергию, электрическое поле емкости энергию отдает, и наоборот. Т.е., когда энергия магнитного поля положительна, энергия электрического поля отрицательна. Суммарная энергия электрического и магнитного полей за четверть периода равна:

где Q – реактивная мощность цепи, она пропорциональна суммарной энергии электрического и магнитного полей и может быть определена через реактивные сопротивления:

При резонансе, когда XL=XC , равны реактивные мощности QL и QC и энергии WM и WЭ , накапливаемые в магнитном и электрическом полях. В этом случае обмен энергией между индуктивностью и емкостью происходит без участия источника.

Для вычисления реактивной мощности можно написать цепочку формул:

При анализе электрических цепей часто используется треугольник мощностей, который можно получить, умножив стороны треугольника сопротивлений на квадрат тока (рис. 28.1). Для него справедливы следующие соотношения:

Буквой S, стоящей рядом с гипотенузой треугольника, обозначается полная мощность. Ее можно вычислить по одной из следующих формул:

Рис. 28.1 — Треугольник мощностей

Полная мощность определяется той электрической энергией, которая вырабатывается генератором и отдается в цепь. Она характеризует габариты электрических машин и аппаратов. Величина напряжения определяет уровень изоляции – ее толщину и расстояние между токоведущими частотами, а ток – поперечное сечение проводника, условия охлаждения машины.

При cosφ = 1 полная мощность равна наибольшему значению активной мощности, которую можно получить при заданных напряжении и токе.

Единицы измерения мощности, имея одну и ту же размерность, называются по-разному. Единица активной мощности – ватт (Вт), реактивной – вольт-ампер реактивный (вар), полной – вольт-ампер (ВА).

Комплексная мощность определяется произведением комплекса напряжения и сопряженного комплекса тока:

Источник

АКТИВНАЯ, РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ ЦЕПИ

date image2015-01-22
views image34584

facebook icon vkontakte icon twitter icon odnoklasniki icon

Умножив стороны треугольников напряжений (см. векторные диаграммы рис. 2.9, б, 2.10, б, 2.11, б) на ток I, получим треугольники мощностей.

Стороны треугольников мощностей соответственно означают:

— Р = UrI = I 2 r — активная мощность цепи, Вт, кВт (рис 2.9, г, 2.10, г, 2.11,г и ж);

— QL = ULI = I 2 xL — реактивная индуктивная мощность цепи, обусловленная энергией магнитного поля, вар, квар (рис. 2.9, г);

— QС = UСI = I 2 хС — реактивная емкостная мощность цепи, обусловленная энергией электрического поля, вар, квар (рис. 2.10, г);

— Q = QL — QС = I 2 x — реактивная мощность цепи, вар, квар (рис 2.11, г и ж), это та мощность, которой приемник обменивается с сетью;

— S = UI = I 2 z — полная мощность цепи. В • А, кВ • А (рис. 2.9, г, 2.10, г, 2.11, г и ж);

— cos φ = r/z = P/S — коэффициент мощности цепи (рис. 2.9, г, 2.10, г, 2.11, г и ж).

Из треугольников мощностей можно установить следующие связи между Р, Q, S и cos φ:

P = S cos φ = UI cos φ;

Q = S sin φ = UI sin φ;

За единицу активной мощности принят ватт (Вт) или киловатт (кВт), реактивной мощности — вольтампер реактивный (вар) или киловольтампер реактивный (квар), полной мощности — вольтампер (ВА) или киловольтампер (кВ • А).

Реактивные (индуктивная, емкостная) мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной paботы, однако они оказывают существенное влияние на режим работы электрической цепи. Циркулируя по проводам трансформаторов, генераторов, двигателей, линий передач, они нагревают их. Поэтому расчет проводов и других элементов устройств переменного тока производят, исходя из полной мощности S, которая учитывает активную и реактивную мощности.

Рис. 2.13. Схема включения приборов для измерения активной, реактивной и полной мощностей цепи, а также ее параметров

Коэффициент мощности имеет большое практическое значение: он показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов, генераторов, двигателей и других электротехнических устройств.

Измерение активной, реактивной, полной мощностей и cos φ, а также параметров цепи, например r и L, можно произвести с помощью ваттметра, амперметра и вольтметра, включенных в цепь по схеме, изображенной на рис. 2.13.

Ваттметр измеряет активную мощность Р цепи. Полная мощность цепи равна произведению показаний вольтметра и амперметра.

Активное сопротивление находят из формулы:

Полное сопротивление цепи

Индуктивность L определяют из формулы

Пример 2.1. Приборы, включенные в цепь рис 2.13, показывают Р = 500 Вт, I = 5 А, U= 400 В.

Определить активное сопротивление r и индуктивность цепи L, если частота сети f = 50Гц.

Решение. Активное сопротивление цепи

r = P/I 2 = 500/5 2 = 20 Ом.

Индуктивное сопротивление цепи

Пример 2.2. Определить ток, полную, активную и реактивную мощности, а также напряжения на отдельных участках цепи, изображенной на рис. 2.11, а. если r = 40 Ом. L = 0,382 Гн, С = 35,5 мкФ, U = 220 В, частота сети f = 50 Гц.

Решение. Индуктивное сопротивление цепи

xL = 2πfL = 2 • 3,14 • 50 • 0,382 = 120 Ом.

Емкостное сопротивление цепи

Полное сопротивление цепи

Ток в цепи:

I = U/z = 220/50 = 4,4 А.

Коэффициент мощности цепи:

cos φ = r/z = 40/50 = 0,8.

Полная, активная и реактивная мощности:

S = UI = I 2 z = 220 • 4,4 = 4,42 • 50 = 970 В • А.

Р = S cos φ = I 2 r = 970 • 0,8 = 4,42 • 40 = 775 Вт;

Q = S sin φ = I 2 (xL — xС) = 970 • 0,56 = 4,42 (120 — 90) = 580 вар.

Напряжения на отдельных участках цепи:

Пример 2.3. Определить характер нагрузки, полную, активную и реактивную мощности цепи, в которой мгновенные значения напряжения и тока составляют:

u = 282 sin (ωt + 60°),

i = 141 sin (ωt + 30°).

Решение. Угол начальной фазы напряжения (ψ1 = 60°) больше, чем тока (ψ2 = 30°), поэтому напряжение опережает по фазе ток на угол φ = ψ1 — ψ2 = 60 — 30 = 30° и нагрузка имеет активно-индуктивный характер.

Полная мощность цепи:

Активная мощность цепи:

Р = S cos φ = 20 000 cos 30° = 20 000 ( /2) — 17 300 Вт

Реактивная мощность цепи:

Q = S sin φ = 20 000 sin 30° = 20000 • 0,5 = 10 000 вар.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector