Физика
Полная мощность источника тока:
P полн = P полезн + P потерь ,
где P полезн — полезная мощность, P полезн = I 2 R ; P потерь — мощность потерь, P потерь = I 2 r ; I — сила тока в цепи; R — сопротивление нагрузки (внешней цепи); r — внутреннее сопротивление источника тока.
Полная мощность может быть рассчитана по одной из трех формул:
P полн = I 2 ( R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,
где ℰ — электродвижущая сила (ЭДС) источника тока.
Полезная мощность — это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.
Полезная мощность может быть рассчитана по одной из трех формул:
P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,
где I — сила тока в цепи; U — напряжение на клеммах (зажимах) источника тока; R — сопротивление нагрузки (внешней цепи).
Мощность потерь — это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.
Мощность потерь, как правило, рассчитывается по формуле
P потерь = I 2 r ,
где I — сила тока в цепи; r — внутреннее сопротивление источника тока.
При коротком замыкании полезная мощность обращается в нуль
так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.
Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле
где ℰ — электродвижущая сила (ЭДС) источника тока; r — внутреннее сопротивление источника тока.
Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:
Максимальное значение полезной мощности:
P полезн max = 0,5 P полн ,
где P полн — полная мощность источника тока; P полн = ℰ 2 / 2 r .
В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:
P полезн max = ℰ 2 4 r .
Для упрощения расчетов полезно помнить два момента:
- если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой
- если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :
Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.
Решение . Проанализируем условие задачи.
1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:
где ℰ — ЭДС источника тока; r — внутреннее сопротивление источника тока.
2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой
где i — сила тока короткого замыкания, i = 12 А.
3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:
I 2 = ℰ R 2 + r = ℰ 2 r ;
в этом случае в цепи выделяется максимальная полезная мощность:
P полезн max = I 2 2 R 2 = I 2 2 r .
Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .
Для того чтобы найти силу тока I 2 , запишем систему уравнений:
i = ℰ r , I 2 = ℰ 2 r >
и выполним деление уравнений:
I 2 = i 2 = 12 2 = 6,0 А.
Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:
I 1 = ℰ R 1 + r , i = ℰ r >
и выполним деление уравнений:
I 1 i = r R 1 + r .
r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.
Рассчитаем максимальную полезную мощность:
P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.
Таким образом, максимальная полезная мощность батареи составляет 36 Вт.
Источник
Полная, полезная мощности и КПД цепи постоянного тока
Рассмотрим замкнутую неразветвленную цепь, состоящую из источника тока и резистора.
Применим закон сохранения энергии ко всей цепи:
Так как , а для замкнутой цепи точки 1 и 2 совпадают, мощность электрических сил в замкнутой цепи равна нулю. Это равносильно утверждению о потенциальности электрического поля постоянного тока, о которой уже упоминалось ранее.
Итак, в замкнутой цепи всё тепло выделяется за счет работы сторонних сил: , или , и мы снова приходим к закону Ома, теперь для замкнутой цепи: .
Полной мощностью цепи называют мощность сторонних сил, она же равна полной тепловой мощности:
Полезнойназывают тепловую мощность, выделяемую во внешней цепи (независимо от того, полезна она или вредна в данном конкретном случае):
Роль электрических сил в цепи. Во внешней цепи, на нагрузке R, электрические силы совершают положительную работу, а при перемещении заряда внутри источника тока – такую же по величине отрицательную. Во внешней цепи теплота выделяется за счет работы электрического поля. Работу, отданную во внешней цепи, электрическое поле «возвращает» себе внутри источника тока. В итоге вся теплота в цепи «оплачена» работой сторонних сил: источник тока постепенно теряет запасенную в нем химическую (или какую-то другую) энергию. Электрическое же поле играет роль «курьера», доставляющего энергию во внешнюю цепь.
Зависимость полной, полезной мощностей и КПД от сопротивления нагрузки R.
Эти зависимости получаем из формул (1 – 2) и закона Ома для полной цепи:
Графики этих зависимостей вы видите на рисунке.
Полная мощность монотонно убывает с ростом , т.к. убывает сила тока в цепи. Максимальная полная мощностьвыделяется при , т.е. при коротком замыкании. Источник тока совершает максимальную работу за единицу времени, но вся она идет на нагревание самого источника. Максимальная полная мощность равна
Полезная мощность имеет максимум при (в чем вы можете убедиться, взяв производную от функции (5) и приравняв ее нулю). Подставив в выражение (5 ) , найдем максимальную полезную мощность:
Легко убедиться, что при полная мощность вдвое больше полезной.
На графике зависимости КПД от видно, что максимум КПД достигается при , однако при этом абсолютная величина полезной мощности стремится к нулю.
Источник
Что такое активная, реактивная и полная мощность
В отличии от сетей постоянного тока, где мощность имеет выражение
и не изменяется во времени, в сетях переменного тока это не так.
Мощность в цепи переменного тока также есть переменной величиной. На любом участке цепи в любой момент времени t она определяется как произведение мгновенных значений напряжения и тока.
Рассмотрим, что представляет активная мощность
В цепи с чисто активным сопротивлением она равна:
Исходя из выражений выше — активная энергия состоит из двух частей — постоянной
, которая меняется с двойной частотой. Среднее ее значение
Отличие реактивной мощности от активной
В цепи, где есть реактивное сопротивление (возьмем для примера индуктивное) значение мгновенной мощности равно:
в итоге получим:
Данное выражение показывает, что реактивная энергия содержит только переменную часть, которая изменяется с двойной частотой, а ее среднее значение равно нулю
Если ток и напряжение имеют синусоидальную форму и сеть содержит элементы типа R-L или R-C, то в таких сетях кроме преобразования энергии в активном элементе R вдобавок еще и изменяется энергия электрического и магнитного полей в реактивных элементах L и C.
В таком случае полная мощность сети будет равна сумме:
Что такое полная мощность на примере простой R-L цепи
Графики изменения мгновенных значений u,i:
φ — фазовый сдвиг между током и напряжением
Уравнение для S примет следующий вид
и заменим амплитудные значения на действующие:
Значение S рассматривается как сумма двух величин
— мгновенные активные и реактивные мощности на участках R-L.
Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.
Итоговые выражения для действующих значений:
Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).
Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:
Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения I н, U н. Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).
Также энергию сети можно выразить через каждую составляющую отдельно:
Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:
Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:
Реактивная составляющая в треугольнике является положительной (Q L), когда ток отстает от напряжения, и отрицательной (Q C), когда опережает:
Для реактивной составляющей сети справедливо алгебраическое выражение:
Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :
Связь между полной и реактивной энергии выражается:
сosφ – это коэффициент мощности. он показывает какую долю от полной энергии составляет активная энергия. Чем ближе он к 1, тем больше полезной энергии потребляется из сети.
Выводы о трех составляющих цепи переменного тока
В отличии от цепей постоянного тока, цепи переменного напряжения имеют три вида мощности – активная, реактивная, полная. Активная энергия, как и в цепях постоянного тока, выполняет полезную работу. Реактивная – не выполняет ничего полезного, а только снижает КПД сети, греет провода, грузит генератор. Полная – сумма активной и реактивной, она равна мощности сети. Индуктивная составляющая реактивной энергии может быть скомпенсирована емкостной. На практике в промышленности это реализовано в виде конденсаторных установок.
Источник