- Компенсационные стабилизаторы
- Схема стабилизатора тока на полевом транзисторе
- Принцип стабилизации тока
- Требования к управляющему элементу
- Суть стабилизации
- Выбор схемы включения
- Работа стабилизаторов тока
- Особенности полевых структур
- Принцип управления переходом
- Устройство и работа полевого транзистора
- Пример стабилизатора на полевом транзисторе
- Видео
- Стабилизатор тока на полевом транзисторе
- Работа стабилизаторов тока
- Устройство и работа полевого транзистора
- Полевые транзисторы в стабилизаторах тока
Компенсационные стабилизаторы
Компенсационные стабилизаторы напряжения позволяют получить постоянное напряжение с минимальным значением пульсаций и шума, поэтому эти стабилизаторы применяются в узлах радиоаппаратуры, наиболее чувствительных к помехам. Более того! Если раньше в радиоэлектронном устройстве применялся один источник стабильного напряжения, а потребители разделялись пассивными RC фильтрами, то теперь экономически выгоднее вместо фильтрующих RC-цепочек поставить интегральные стабилизаторы напряжения.
Следует отметить, что при написании этой статьи я решал непростую дилемму. С одной стороны в настоящее время на рынке предлагается огромное количество готовых микросхем стабилизаторов напряжения. С другой стороны для правильного выбора и применения этих микросхем нужно понимать как они работают. Именно поэтому сначала познакомимся с принципами работы компенсационного стабилизатора, а только потом рассмотрим особенности применения готовых микросхем. Структурная схема компенсационного стабилизатора приведена на рисунке 1.
Рисунок 1. Структурная схема компенсационного стабилизатора напряжения
Стабилизация выходного напряжения в компенсационном стабилизаторе происходит при помощи отрицательной обратной связи. Выходное напряжение может измениться под влиянием входного напряжения или изменения тока нагрузки. Оно сравнивается с опорным высокостабильным напряжением и при несовпадении осуществляется его подстройка под заданное значение.
В процессе работы компенсационного стабилизатора транзистор, который применяется в качестве регулировочного элемента, изменяет свое внутреннее сопротивление. На этом сопротивлении по закону Ома осуществляется падение напряжения ΔUРЭ. При этом напряжение падает ровно настолько, чтобы на выходе получилось требуемое напряжение питания. Это означает, что при применении компенсационного стабилизатора входное напряжение всегда должно быть больше выходного.
В схеме, приведенной на рисунке 1, коэффициент передачи элемента регулирования Kр определяет зависимость выходного напряжения от входного. Для хорошего стабилизатора чем меньше будет этот коэффициент, тем лучше. Пульсации входного напряжения не смогут пройти на выход стабилизатора. Поэтому в элементе регулировки обычно входное напряжение подается на коллектор биполярного транзистора или сток полевого транзистора. Эталонное напряжение Uэт обычно не совпадает с выходным напряжением стабилизатора, поэтому между его выходом и схемой сравнения ставится делитель напряжения с коэффициентом деления Kд. Для получения необходимого коэффициента стабилизации между устройством сравнения и регулирующим транзистором ставится усилитель постоянного тока, который усиливает сигнал ошибки ΔUE. Общий коэффициент петлевого усиления в данной схеме можно определить следующим образом:
Принцип работы компенсационного стабилизатора лучше пояснить по принципиальной схеме. Подобная схема, выполненная на двух транзисторах, приведена на рисунке 2.
Рисунок 2. Принципиальная схема простейшего компенсационного стабилизатора напряжения
В этой схеме в качестве регулирующего элемента использован транзистор VT1, включенный по схеме с общим коллектором. Схема сравнения реализована на транзисторе VT2. Ток этого транзистора зависит от разности напряжений между базой и эмиттером. В качестве эталонного источника напряжения применен параметрический стабилизатор на резисторе R1 и стабилитроне VD1. Выходное напряжение поступает на базу транзистора VT2 через делитель напряжения R3, R4.
Если напряжение на выходе стабилизатора по каким либо причинам возросло, то транзистор VT2 приоткрывается и напряжение на его коллекторе уменьшается. К коллектору VT2 подключена база транзистора VT1, следовательно, уменьшится и напряжение на выходе стабилизатора (вернется к заданному значению). Аналогичным образом схема отрицательной обратной связи отработает и при уменьшении напряжения на выходе.
Следует заметить, что от транзистора VT1 требуется обеспечивать большой коэффициент усиления по току, поэтому в современных стабилизаторах, таких как иностранные микросхемы 7805 или КР142ЕН5 отечественного производства, в качестве этого транзистора применяется составной транзистор по схеме Дарлингтона.
Рисунок 3. Схема Дарлингтона
Коэффициент усиления усилителя, собранного на транзисторе VT2, сильно зависит от сопротивления R2. Чем больше будет это сопротивление, тем больше Kу, и, следовательно, коэффициент стабилизации. Кроме того, через это сопротивление на базу транзистора VT1 поступают пульсации входного напряжения Uвх. С этой точки зрения тоже следует увеличивать сопротивление резистора R2. Однако в результате может не хватить тока для работы транзисторов VT1 и VT2. Поэтому в современных стабилизаторах вместо обычного резистора применяются генераторы тока. Чаще всего токовое зеркало.
Рисунок 4. Принципиальная схема токового зеркала
В результате получается схема, подобная схеме стабилизатора с фиксированным выходным напряжением 7805. Конечно, существуют микросхемы стабилизаторов с регулируемым выходным напряжением, однако подобная функция приводит к усложнению схемы и снижению параметров стабилизатора, поэтому выгоднее подобрать готовый стабилизатор на необходимое напряжение.
Рисунок 5. Принципиальная схема компенсационного стабилизатора 7805
Несмотря на достаточно сложную внутреннюю схему, применять такой стабилизатор чрезвычайно просто. Его схема включения приведена на рисунке 6
Рисунок 6. Принципиальная схема стабилизатора, реализованного на микросхеме 7805
Микросхемы, выполненные по этой схеме выпускаются большинством ведущих фирм мира. В качестве примера можно назвать LM7805 фирм Texas Instruments, STMicroelectronics, Fairchild Semiconductor, способную выдавать выходной ток более 1,5 А. Имеется отечественный аналог — стабилизаторы КР142ЕН5В. В названии приведенной микросхемы стабилизатора цифры 78 означают, что это стабилизатор, а цифры 05 означают, что он формирует на выходе напряжение 5 В. Соответственно стабилизаторы 7803 будут формировать напряжение 3.3 В, микросхема 7809 сформирует на выходе напряжение 9В, микросхема 7812 обеспечит напряжение 12В.
Так как через силовой транзистор (элемент регулировки) протекает весь ток нагрузки, то на нем выделяется тепловая энергия, которую необходимо рассеять в окружающем пространстве. Поэтому обычно этот стабилизатор размещается на радиаторе. Для удобства крепления микросхема выполняется в специально разработанном корпусе TO-220, который даже без радиатора способен рассеять до 1 Вт тепла.
Рисунок 7. Примеры компенсационных стабилизаторов, выполненных на микросхеме 7805
В ряде случаев такой большой ток не требуется, поэтому были разработаны микросхемы маломощных стабилизаторов напряжения. Наиболее распространены микросхемы LM78L05. Эти микросхемы выпускаются в малогабаритных корпусах, таких как SOIC, SOT-89, DSBGA или TO-92. Отечественные малогабаритные стабилизаторы — КР1157. Их схема включения не отличается от схемы, приведенной на рисунке 6, но конструкция совершенно другая.
Рисунок 8. Примеры компенсационных стабилизаторов, выполненных на микросхеме 78L05
Как видно из приведенных примеров, компенсационные стабилизаторы нашли широкое применение в современных компьютерах, сотовых телефонах и рациях.
Дата последнего обновления файла 21.05.2019
- Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
- Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
- Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
- Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
- Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения (meanders.ru)
- LDO-преобразователи с низким током собственного потребления и малым падением напряжения (compel.ru)
- Одноканальные LDO-стабилизаторы малой мощности компании Texas Instruments (rlocman.ru)
- 3 Pin 1.5A Fixed 5V Positive Voltage Regulator (ti.com)
- 1A LOW DROPOUT POSITIVE FIXED 2.5V REGULATOR (gaw.ru)
Вместе со статьей «Компенсационные стабилизаторы» читают:
Источник
Схема стабилизатора тока на полевом транзисторе
Для корректной функциональности многих электротехнических устройств необходимо поддержание определенных рабочих параметров сети питания. Выход напряжения за границы нормированного диапазона сопровождается ухудшением КПД. Импульсные помехи провоцируют сбои. Исправить ситуацию поможет стабилизатор тока на полевом транзисторе схема которого представлена в этой публикации.
Принцип стабилизации тока
Целевое назначение специальной схемы – регулирование источника питания в автоматическом режиме для поддержания стабильных параметров цепей нагрузки. Основной компонент – достаточно мощный полупроводниковый прибор, ограничитель силы тока на выходе блока питания.
Требования к управляющему элементу
Критерии выбора можно сформулировать, если известны параметры силы тока (ампер). Однако даже без конкретного технического задания несложно перечислить базовые требования:
- ток в контрольной цепи поддерживается с определенной точностью;
- следует компенсировать перепады потребляемой мощности;
- корректирующие изменения должны выполняться достаточно быстро;
- для автоматической настройки оптимального режима и улучшения защиты от помех нужна организация обратной связи.
Суть стабилизации
Для уточнения функциональности управляющего элемента необходимо отметить особенности типичной нагрузки. Интенсивность излучения светодиода, например, существенно зависит от температуры в процессе эксплуатации. Соответствующим образом изменяется мощность потребления. При увеличении тока уменьшается напряжение.
Важно! Если установить обратную связь (отрицательную), отмеченное изменение будет регулировать рабочий режим управляющего устройства. В частности, при увеличении напряжения между затвором и стоком полевого транзистора ток через исток уменьшается. Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника.
Выбор схемы включения
На практике применяют разные инженерные решения. В частности, для подключения светодиодных светильников производители предлагают импульсные источники питания. Эти устройства выполняют свои функции с помощью частотного преобразования и модуляции сигнала. Для управления ключом устанавливают микросхемы. Для дозированного накопления энергии используют дроссель.
Для упрощения в данной статье рассмотрена линейная стабилизация. Устройства, созданные по этой схеме, не создают сильные электромагнитные помехи. В этом – главное отличие от импульсных аналогов.
Работа стабилизаторов тока
Минимальное количество функциональных элементов в схемах этой категории подразумевает разумную стоимость. При выборе такого варианта нетрудно изучить рабочие режимы, особенности настройки.
Особенности полевых структур
В радиотехнических приборах этого типа p-n переходы расположены особым образом. Для регулировки прохождения тока через центральный канал изменяются напряжение и соответствующее электромагнитное поле. Разницу потенциалов создают на стоке и затворе.
На рисунке показаны принципиальные отличия, по сравнению с биполярным транзистором. При использовании полевой структуры управляющий ток отсутствует, а входное сопротивление становится значительно больше. При такой схеме прибор потребляет минимум энергии, но не способен обеспечить усиление сигнала. Впрочем, для решения обозначенной задачи (стабилизации) увеличивать напряжение не нужно.
Принцип управления переходом
В области между зонами р типа формируется канал. Для прохождения тока создается разница потенциалов «сток-исток». Управляют переходом изменением напряжения «затвор-исток» – Uзи.
Устройство и работа полевого транзистора
Для изучения функциональности полевого транзистора можно рассмотреть две схемы подключения. В первом варианте соединяют исток и затвор проводником, выравнивая соответствующий потенциал: Uзи= 0. Повышением напряжения Uси (сток-исток) обеспечивают прохождение тока в рабочей зоне.
В показанном на рисунке состоянии прибор функционирует как типичный проводник. Специфическое название на графике «Омическая область» определяет зону пропорционального увеличения силы тока по мере увеличения разницы потенциалов. При переходе в режим насыщения количества свободных зарядов недостаточно для поддержания отмеченного изменения.
На этом рисунке канал прохождения зарядов сужают дополнительным источником питания, который уменьшает Uзи Полевые транзисторы в стабилизаторах тока
В идеальном примере источник питания обеспечивает стабильность тока, если электрическое сопротивление цепи нагрузки меняется от нуля (КЗ) до бесконечности. Однако в действительности рабочие параметры проводимости (напряжения) ограничены определенным диапазоном. Схема на полевом транзисторе с последовательным подключением к зарядному устройству, солнечной батарее или другому «реальному» источнику обеспечит поддержание тока в линии на заданном уровне.
Пример стабилизатора на полевом транзисторе
При создании радиотехнических устройств с применением ламп типовой анодный блок питания не обеспечивает необходимую стабильность выходных параметров. Добавление резистора в цепь увеличивает потери, не позволяет точно корректировать изменение мощности в нагрузке.
Своими руками несложно собрать этот стабилизатор тока на полевом транзисторе. С его помощью обеспечивается точность заданных параметров в диапазоне не более 6% от номинала.
Видео
Источник
Стабилизатор тока на полевом транзисторе
Современного человека в быту и на производстве окружает большое количество электротехнических приборов и оборудования. Для устойчивой, стабильной работы всей этой техники требуется бесперебойная подача электроэнергии. Однако из-за скачков сетевого напряжения, приборы довольно часто выходят из строя. Во избежание подобных ситуаций, применяются специальные устройства, в том числе и стабилизатор тока на полевом транзисторе. Его использование гарантирует нормальную работу электротехники, предотвращает аварии и поломки.
Работа стабилизаторов тока
Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.
Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.
В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.
Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.
Устройство и работа полевого транзистора
Управление полевыми транзисторами осуществляется посредством электрического поля, отсюда и появилось их название. В свою очередь электрическое поле создается под действием напряжения. Таким образом, все полевые транзисторы относятся к полупроводниковым приборам, управляемым напряжением.
Канал этих устройств открывается только с помощью напряжения. При этом, ток не протекает через входные электроды. Исключение составляет лишь незначительный ток утечки. Отсюда следует, что какие-либо затраты мощности на управление отсутствуют. Однако на практике не всегда используется статический режим, в процессе переключения транзисторов задействована некоторая частота.
В конструкцию полевого транзистора входит внутренняя переходная емкость, через которую протекает некоторое количество тока во время переключения. Поэтому для управления затрачивается незначительное количество мощности.
В состав полевого транзистора входит три электрода. Каждый из них имеет собственное название: исток, сток и затвор. На английском языке эти наименования соответственно будут выглядеть, как source, drain и gate. Канал можно сравнить с трубой, по которой движется водяной поток, соответствующий заряженным частицам. Вход потока происходит через исток. Выход заряженного потока происходит через сток. Для закрытия или открытия потока существует затвор, выполняющий функцию крана. Течение заряженных частиц возможно лишь при условии напряжения, прилагаемого между стоком и истоком. При отсутствии напряжения тока в канале также не будет.
Таким образом, чем больше значение подаваемого напряжения, тем сильнее открывается кран. Это приводит к увеличению тока в канале на участке сток-исток и уменьшению сопротивления канала. В источниках питания применяется ключевой режим работы полевых транзисторов, позволяющий полностью закрывать или открывать канал.
Полевые транзисторы в стабилизаторах тока
Стабилизаторы тока предназначены для поддержания параметров тока на определенном уровне. Благодаря этим свойствам, данные приборы успешно используются во многих электронных схемах. Чтобы понять принцип действия, следует рассмотреть некоторые теоретические вопросы. Известно, что в идеальном источнике тока присутствует ЭДС, стремящаяся к бесконечности и бесконечно большое внутреннее сопротивление. За счет этого удается получить ток с требуемыми параметрами, независимо от сопротивления нагрузки.
Идеальный источник способен создавать ток, остающийся на одном уровне, несмотря на изменяющееся сопротивление нагрузки в диапазоне от короткого замыкания до бесконечности. Для поддержания значения тока на неизменном уровне, величина ЭДС должна изменяться, начиная от величины больше нуля и до бесконечности. Основным свойством источника, позволяющим получать стабильное значение тока, является изменение сопротивления нагрузки и ЭДС таким образом, чтобы значение тока оставалось на одном и том же уровне.
Но, на практике поддержка источником требуемого уровня тока происходит в ограниченном диапазоне напряжения, возникающего на нагрузке. Реальные источники тока используются вместе с источниками напряжения. К таким источникам относится обычная сеть на 220 вольт, а также аккумуляторы, блоки питания, генераторы, солнечные батареи, поставляющие потребителям электрическую энергию. С каждым из них может быть последовательно включен стабилизатор тока на полевом транзисторе, выход которого выполняет функцию источника тока.
Простейшая конструкция стабилизатора состоит из двухвыводного компонента, с помощью которого происходит ограничение протекающего через него тока, до необходимых параметров, устанавливаемых изготовителем. Своим внешним видом он напоминает диод малой мощности, поэтому данные приборы известны как диодные стабилизаторы тока.
Стабилизатор тока на транзисторе
Полевой транзистор принцип работы
Полевой транзистор – схема
Как проверить полевой транзистор мультиметром
Источник