Меню

Параллельная работа преобразователей напряжения

Работа нескольких источников питания на общую нагрузку: возможные варианты и компромиссы

Arthur Russell, Vicor Corporation

Существует множество причин, которые могут побудить разработчика к параллельному включению источников питания постоянного тока. Некоторые из них обусловлены экономическими и логистическими аспектами, другие направлены на обеспечение требуемого тока системы, уровня характеристик и надежности.

Если рассматривать вопрос с непроектной стороны, возможность параллельного включения источников питания может позволить использовать одну модель блока питания во всей номенклатуре выпускаемых изделий, как отдельно, так и в различных комбинациях. Это может упростить поиск комплектующих, увеличить объем закупок однотипных устройств и оптимизировать управление запасами.

С технической точки зрения обосновать необходимость параллельного включения источников питания, конечно же, сложнее. Во-первых, это может быть своеобразной «страховкой» на случай, если выяснится, что реальный ток, требуемый продукту, превышает планируемый. Такое может произойти, например, из-за отсутствия компонентов с более низким потреблением мощности, или же после дополнительных маркетинговых исследований, показавших необходимость добавления новых функций. Во-вторых, параллельное соединение может обеспечить избыточность N+1, и даже N+2 для защиты от одиночных отказов, или возможность горячей замены отказавшего источника без воздействия на систему. В-третьих, можно использовать известные, проверенные источники питания с хорошо изученными характеристиками и типоразмерами, чтобы снизить неопределенность и проектные риски. Наконец, это позволяет «перераспределять тепло» за счет дополнительной гибкости в физическом размещении преобразователей энергии, если одно более мощное устройство в ограниченном объеме рассеивает слишком много тепла.

Из гибкости и потенциальных преимуществ соединения нескольких источников вытекает очевидный вопрос: всякий ли блок питания без изменений, «как есть» может быть использован в параллельной конфигурации? Ответом будет «нет». Это зависит от конструкции источников, технологии соединения, а также от причин, побуждающих включать их параллельно.

На первый взгляд, самым очевидным и легким способом параллельного объединения источников будет простое соединение их выходов. Но в большинстве случаев это работать не будет, так как каждый блок питания имеет свою схему стабилизации выходного напряжения, которая не только будет стремиться восстановить это напряжение при изменениях нагрузки, но и попытается противодействовать контурам регулирования других источников.

Простое параллельное соединение традиционных источников питания с внутренним опорным напряжением и усилителем ошибки, сравнивающим это напряжение с выходным, не приведет к повышению выходной мощности всего массива. Различия в параметрах блоков питания всегда будут приводить к тому, что только один из них, с наибольшим относительно выходного опорным напряжением, будет стремиться отдавать весь ток в нагрузку, в то время как остальные не будут нагружены вовсе.

В этом случае, как только нагрузка превысит возможности этого «ведущего» источника питания, он может либо войдет в режим ограничения тока (который может быть, а может и не быть предусмотрен его конструкцией), либо будет интерпретировать перегрузку как аварийный режим, и отключится. В зависимости от типа источника, эта ситуация может привести к дисбалансу системы питания, особенно, если она возникает во время обычной работы устройства. В дальнейшем, в случае отключения источника из-за перегрузки, всю нагрузку примет на себя следующий источник с наибольшим опорным напряжением, и он точно также отключится. Это быстро приведет к обрушению всей шины питания.

Связка соединенных напрямую источников питания может функционировать нормально лишь в том случае, когда один источник работает в режиме стабилизации напряжения (CV – constant-voltage mode), а остальные – в режиме стабилизации тока (СС – constant-current mode) с чуть бóльшим выходным напряжением. Отметим, что далеко не во всех источниках питания предусмотрена возможность выбора выходного режима. Источники питания, на выходах которых установлено более высокое выходное напряжение, обеспечат постоянство выходного тока, а напряжение на выходе каждого из них будет снижаться до тех пор, пока не сравняется с напряжением источника CV. Нагрузка должна потреблять ток, достаточный для того, чтобы гарантировать, что источники, которые должны работать в режиме CC, будут оставаться в этом режиме. Следует обратить внимание, что использование двух режимов означает, что источники уже не являются строго идентичными, и тем самым одно из преимуществ параллельной конфигурации сводится на нет.

Прямое соединение становится практичным, если источники питания специально разработаны для поддержки такой топологии, или если имеется единый усилитель ошибки петли обратной связи, вырабатывающий сигнал рассогласования для всех остальных источников питания, чтобы позволить им распределить между собой отдаваемую в нагрузку мощность. Однако такой метод требует наличия «общей шины» для передачи сигналов управления от ведущего источника питания к ведомым.

Другой подход заключается в добавлении небольших балластных резисторов последовательно с выходом каждого источника питания (Рисунок 1), которые выравнивают распределение токов нагрузки между источниками в группе даже тогда, когда их схемы управления отслеживают разные выходные напряжения. Балластные резисторы несколько ухудшают качество стабилизации нагрузки, причем степень этого ухудшения зависит от величины разброса ошибок уставок, для компенсации которых используются резисторы. Однако эти балластные резисторы также рассеивают тепло, что ухудшает КПД системы.

Рисунок 1. Один из подходов заключается в использовании относительно низкоомных
балластных резисторов на выходе каждого источника питания, однако это
приводит к повышенному тепловыделению и снижению общего КПД.

Этот «ИЛИ» тот?

Казалось бы, «простое» решение дилеммы прямого подключения состоит в том, чтобы всего лишь использовать диод между каждым источником питания и общей точкой, объединяющей все источники. Такой метод (Рисунок 2) обычно называют диодным «ИЛИ». Диодное «ИЛИ» очень эффективно тогда, когда нужно исключить возможность протекания тока вне общей нагрузки, но, как правило, недостаточно для устранения ошибок распределения между источниками питания с независимыми усилителями ошибки, поскольку излом характеристики проводимости диода достаточно резок для того, чтобы параметрические различия в уставках по-прежнему оставались причиной значительного дисбаланса источников.

Рисунок 2. В принципе, выходы нескольких источников питания могут быть
объединены с помощью диодов, изолирующих источники друг от
друга, но при такой конфигурации возникает множество проблем,
связанных с балансировкой и распределением токов.

Как правило, диодное «ИЛИ» требуется для работающих независимо источников питания, выходные токи которых могут быть как вытекающими, так и втекающими (работа в двух квадрантах). Эффект прямого параллельного соединения таких источников питания без использования диодов будет намного хуже, чем в случае одноквадрантных источников. В то время как одноквадрантные источники питания лишь теряют точность при подключении к общей нагрузке, двухквадрантные источники будут активно бороться за контроль над общим выходным напряжением. Это приведет к превышению токов, циркулирующих в группе источников питания, над током в нагрузке, и, возможно, станет причиной немедленной перегрузки одного или нескольких источников.

Кроме того, если диоды имеют отрицательный температурный коэффициент порога проводимости, они даже будут способствовать нарушению распределения токов в группе источников. Один из способов смягчения этой проблемы заключается в использовании выпрямителей с положительным температурным коэффициентом – на диодах Шоттки, или на полевых транзисторах, выполняющих функции диодов в схеме активного «ИЛИ», однако диоды могут снизить общий КПД за счет прямого падения напряжения, а активное «ИЛИ» может увеличить стоимость и сложность схемы.

В некоторых случаях диодное «ИЛИ» может способствовать повышению надежность на системном уровне. Особенно интересен случай, когда в одном из блоков питания происходит короткое замыкание выходного полевого транзистора или конденсатора, что может поставить под угрозу работу общей шины выходного напряжения. Диоды схемы «ИЛИ» быстро отсекут короткое замыкание от общей выходной шины и обеспечат устойчивость и надежность системы.

Кто здесь главный?

Чтобы надежно и предсказуемо функционировать в общей группе, источники питания, как правило, должны специально проектироваться для параллельной работы. Необходимы синхронизация при запуске, координация цепей защиты от неисправностей и стабильность контура обратной связи.

Для группы источников питания, соединенных параллельно с целью увеличения полезного тока нагрузки, требуется использование таких методов управления петлей обратной связи, которые учитывают совместную работу источников. Распространенной стратегией является включение источников питания без внутренних усилителей сигналов ошибки, когда вместо этого все источники объединяются в группу с общим входом управления, подключенным к одному усилителю ошибки. Этот усилитель регулирует выходное напряжение системы, а затем его сигнал обратной связи распределяется между всеми источниками питания в системе.

Основным преимуществом этой популярной стратегии управления является отличная стабилизация выходного напряжения. Кроме того, ошибки распределения уходят на второй план перед производственным разбросом коэффициентов усиления широтно-импульсных модуляторов преобразователей. С другой стороны, использование одного усилителя ошибки и однопроводной шины управления создает уязвимую для неисправностей точку, которая может стать источником проблем в некоторых высоконадежных системах. Кроме того, параметрические отклонения в модуляторе трудно контролировать, что вынуждает производителя к компромиссному решению в пользу управления распределением токов нагрузки.

В варианте с общей петлей регулирования ошибки распределения токов можно сделать минимальными, если жестко ограничить разброс параметров цепей управления источников. Во избежание перегрузки какого-либо источника в группе из-за больших ошибок распределения необходимо либо снизить расчетную нагрузку группы, либо использовать определенные меры противодействия. Для выравнивания ошибок распределения токов, обусловленных разбросом параметров цепей управления, может использоваться заводская регулировка для калибровки выходных ошибок (дорогостоящий метод), или добавление в каждый источник массива локального контура стабилизации тока (что увеличит сложность схемы и количество компонентов). Для измерения тока этих локальных петель, как правило, к источнику питания добавляют резистивный шунт.

Читайте также:  Чему равно выходное напряжение компаратора

Еще один проблемой, возникающей в случае группирования изолированных источников питания, имеющих собственные узлы управления с опорными уровнями на первичной стороне DC/DC преобразователя, является передача сигнала усилителя ошибки через изолирующий барьер между первичной и вторичной частями схемы. Использование изоляции часто увеличивает стоимость решения, отбирает существенную часть ценной площади печатной платы и, в зависимости от используемых для изоляции компонентов, может неблагоприятно влиять на надежность.

Вторая стратегия организации контура управления, позволяющая объединять источники в параллельные группы, основана на использовании сопротивлений силовых проводников в качестве балластных резисторов для метода, изображенного на Рисунке 1. При реализации технологии, называемой «droop-share» (распределенное снижение напряжения), каждый источник питания имеет свое опорное напряжение и интегрированный усилитель ошибки, но вслед за увеличением тока нагрузки опорное напряжение намеренно и линейно снижается на некоторую определенную величину.

Запараллеливание источников питания может оказывать негативное влияние на переходную характеристику и качество стабилизации выходного напряжения. В методе droop-share для распределения мощности между модулями в группе намеренно используется обратная характеристика регулирования. Из-за этого стабильность выходного напряжения группы droop-share, как правило, бывает хуже, чем у группы, созданной с одним традиционным усилителем ошибки. Если это нежелательно, для эффективной компенсации отрицательного наклона характеристики управления можно использовать внешний контур регулирования. Получающаяся погрешность статического регулирования идентична погрешности для случая традиционного усилителя ошибки, так как внешний контур сам по себе является интегратором ошибки.

Конструкцию системы питания можно упростить

Поставщики источников питания могут предпринять определенные шаги, облегчающие их параллельное соединение. Например, в свои модульные DC/DC преобразователи (DC/DC Converter Module – DCM) компания Vicor встроила цепи регулирования выходного напряжения с отрицательным наклоном нагрузочной кривой, благодаря которым при увеличении тока нагрузки внутренний стабилизатор может слегка уменьшать выходное напряжение. Это эффективно действует как небольшой балластный резистор, однако, без каких-либо реальных резисторов, и с несколькими дополнительными существенными отличиями (Рисунок 3).

Рисунок 3. Выпускаемые Vicor преобразователи серии DCM сконструированы
таким образом, чтобы для параллельного включения было достаточно
просто соединить их выходы. Не нужны ни диоды, ни балластные
резисторы, ни какие-либо другие элементы балансировки нагрузки.

Во-первых, это иной способ реализации балластного резистора, не связанный с потерями энергии, поскольку при отсутствии физического резистора, соответственно, нет выделения тепла. Второе отличие касается динамической реакции, так как реальный резистор для частот до сотен килогерц может считаться бесконечно «широкополосным» элементом, вольтамперная характеристика которого остается неизменной благодаря отсутствию высокочастотных паразитных реактивных составляющих. Вследствие этого любое мгновенное изменение напряжения на резисторе приводит к немедленному соответствующему изменению тока.

В преобразователях DCM требуемая форма нагрузочной характеристики реализуется через дискретную модуляцию цифро-аналогового преобразователя, вырабатывающего опорное напряжение для усилителя ошибки. Расчет подходящего значения опорного напряжения основан, в первую очередь, на оценке величины выходного тока DCM и включает некоторое усреднение для снижения уровня шумов. Поэтому резистор, который эмулируется нагрузочной характеристикой DCM, ведет себя так, как если бы к нему был подключен параллельный конденсатор значительной емкости, и при взгляде на рисунки из технических описаний, иллюстрирующие отклик источника на скачок нагрузки, отчетливо просматривается результирующая RC-постоянная времени.

Тем не менее, такие выходные нагрузочные характеристики позволяют непосредственно соединять выходы нескольких DCM в параллель, несмотря на то, что каждый из них по-прежнему имеет свой собственный активный усилитель ошибки петли регулирования. Если активные сопротивления проводников между выходами источников и нагрузкой идентичны, регулировки выходных напряжений одинаковы, и все источники имеют одну и ту же температуру, то распределение токов нагрузки внутри группы DCM будет идеально ровным. Таким образом, соединенные параллельно DCM ведут себя как один DCM, но с бóльшим выходным током (Рисунок 4).

Рисунок 4. При параллельном соединении источников DCM компании Vicor вся
группа работает как один преобразователь. Кроме того, как видно
из нагрузочной характеристики, в случае избыточного резервирования
уровня N+1 относительно максимальной нагрузки группа продолжает
нормально функционировать даже при отказе одного из
преобразователей.

Благодаря отрицательному температурному коэффициенту выходного напряжения, изменения температуры отдельных устройств в группе преобразователей семейства DCM не становятся источником проблем. Если один источник нагружен больше, чем другие, его температура повысится относительно остальных устройств группы, что, в свою очередь, приведет к уменьшению его выходного напряжения. Поскольку выходные напряжения остальных источников группы параллельных DCM согласованы с напряжением нагруженного DCM, их выходы, в соответствии с их нагрузочными характеристиками, будут увеличивать свои доли токов и возвращать систему обратно к равновесию.

Аналогичные подходы к решению проблем параллельного соединения DC/DC источников питания применимы как к преобразователям, существенно более мощным, чем выпускаемые Vicor устройства серии DCM, так и к интегральным источникам питания, предназначенным для намного меньших нагрузок. Например, выпускаемый Linear Technology трехамперный LDO регулятор LT3083 поддерживает параллельную работу с использованием балластных резисторов сопротивлением 10 мОм, включенных между выходом каждого регулятора и общей выходной шиной.

Параллельное соединение источников питания является привлекательной и жизнеспособной технологией, дающей такие преимущества, как сокращение объема складских запасов, унификация продуктов, дополнительный выходной ток и избыточное резервирование по схеме N+1. Однако это должно делаться с пониманием особенностей тех или иных технологий параллельного соединения, а также с четким представлением о структуре и работе контура обратной связи, который будет обеспечивать управление группой источников питания.

Источник



устройство управления параллельной работой преобразователей постоянного напряжения, прежде всего в имеющей несколько уровней напряжения электрической бортовой сети транспортного средства

Изобретение относится к электротехнике, в частности к устройству и способу управления параллельной работой преобразователей постоянного напряжения, прежде всего в имеющей несколько уровней напряжения электрической бортовой сети транспортного средства, с двумя регулировочными диапазонами напряжения (U 1 ) и (U 2 ). Между этими диапазонами напряжения расположены указанные параллельно включенные преобразователи напряжения, при этом лишь один из преобразователей напряжения выполнен в виде активного регулятора напряжения, а остальные (n-1) преобразователи работают в соответствии с необходимой потребностью в мощности либо в режиме полной нагрузки, либо в режиме холостого хода. Техническим результатом изобретения является повышение мощности преобразователей постоянного напряжения за счет контролируемого управления параллельной работой нескольких отдельных преобразователей при одновременном предотвращении указанных выше колебаний, обусловленных паразитной связью. 13 з.п. ф-лы, 4 ил.

Формула изобретения

1. Устройство управления параллельной работой преобразователей постоянного напряжения, прежде всего в имеющей несколько уровней напряжения электрической бортовой сети транспортного средства, с двумя регулировочными диапазонами напряжения (U 1 ) и (U 2 ), между которыми расположены указанные параллельно включенные преобразователи напряжения, отличающееся тем, что лишь один из преобразователей напряжения работает как активный регулятор напряжения, а остальные (n-1) преобразователи работают в соответствии с необходимой потребностью в мощности либо в режиме полной нагрузки, либо в режиме холостого хода.

2. Устройство по п.1, отличающееся тем, что первый преобразователь или соответствующий следующий преобразователь берут на себя функции по регулированию напряжения в режиме частичной нагрузки.

3. Устройство по п.1 или 2, отличающееся тем, что нагрузка распределяется по заданному количеству параллельных преобразователей таким образом, чтобы преобразователи (1), (2) и (3) работали в режиме полной нагрузки с отдачей на выходе максимального выходного тока, преобразователь (4) брал на себя функции по регулированию напряжения и перекрывал активный, соответственно варьируемый диапазон изменения мощности, а преобразователь (5) находился в режиме холостого хода.

4. Устройство по любому из предыдущих пунктов, отличающееся тем, что при низкой потребности в мощности работает только один, в частности первый, преобразователь, который берет на себя функции по регулированию выходного напряжения, а остальные преобразователи в это время не работают.

5. Устройство по п.4, отличающееся тем, что в том случае, если потребность в мощности превышает ту мощность, которую способен обеспечить один отдельный преобразователь, последний переходит на режим полной нагрузки с отдачей максимального выходного тока и передает функции по регулированию напряжения следующему преобразователю.

6. Устройство по п.4 или 5, отличающееся тем, что при дальнейшем увеличении потребности в мощности на режим полной нагрузки переходят последующие преобразователи и каждый следующий за ними преобразователь переходит в режим частичной нагрузки, а при снижении потребности в мощности преобразователи последовательно переключаются с режима полной нагрузки обратно на режим частичной нагрузки.

7. Устройство по любому из предыдущих пунктов, отличающееся тем, что управление преобразователями реализовано с помощью иерархической схемы контроля с использованием электронного блока контроля и управления, который управляет всеми преобразователями и принимает от них данные, при этом обмен данными осуществляется по шине последовательного обмена, прежде всего по CAN-шине, или по отдельным сигнальным шинам.

8. Устройство по п.7, отличающееся тем, что электронный блок контроля и управления встроен в один из преобразователей.

9. Устройство по любому из предыдущих пунктов, отличающееся тем, что заданное количество преобразователей работает с определенной выходной основной нагрузкой, при этом пороги переключения для дальнейшей передачи функции по регулированию напряжения согласуют с этой основной нагрузкой, а порог подключения при увеличении потребности в мощности рассчитывается как Р=Р макс -Р осн , тогда как порог отключения при снижении потребности в мощности соответствует основной нагрузке.

Читайте также:  Падения переменного напряжения линии

10. Устройство по любому из предыдущих пунктов, отличающееся тем, что заданное количество преобразователей работает в режиме частичной нагрузки таким образом, чтобы их кпд достигал своей максимальной величины, при этом центральный электронный блок управления и контроля с помощью соответствующих управляющих сигналов при необходимости повышает мощность до максимальной величины.

11. Устройство по любому из предыдущих пунктов, отличающееся тем, что преобразователи работают в последовательной конфигурации и связаны между собой, при этом каждый преобразователь выдает на следующий за ним преобразователь сигнал о достижении им своей максимальной мощности и получает от этого преобразователя сигнал о достижении им режима холостого хода.

12. Устройство по п.8, отличающееся тем, что функции по регулированию напряжения выполняет только один из преобразователей и по достижении им своей полной нагрузки эти функции последовательно передаются далее последующим преобразователем.

13. Устройство по любому из предыдущих пунктов, отличающееся тем, что в качестве порога переключения для последовательной дальнейшей передачи функций по регулированию напряжения или для отключения используют величину основной нагрузки или величину максимального кпд.

14. Устройство по любому из предыдущих пунктов, отличающееся тем, что обмен данными происходит по шине последовательного обмена, прежде всего по CAN-шине, или по отдельным сигнальным шинам.

Описание изобретения к патенту

Уровень техники
Для повышения мощности преобразователей постоянного напряжения они работают в режиме «ведущий-подчиненный». В этом режиме «ведущий-подчиненный» так называемое «ведущее» устройство как устройство более высокого уровня берет на себя функции по регулированию всей системы. Один или несколько преобразователей как устройств нижнего уровня (являющихся «подчиненными» устройствами) работают в регулируемом режиме, что потенциально создает условия для многократного увеличения электрической мощности. Управлять преобразователем, являющимся подчиненным устройством, можно, например, путем передачи на электрические вентили команд на переключение (например сигнала, управляющего переключающими транзисторами).

Предпосылки создания изобретения
Преобразователи постоянного напряжения применяют для получения напряжения одного или нескольких уровней или для передачи энергии между двумя потенциалами с различными уровнями напряжения (например, в электрической бортовой сети транспортного средства с двумя уровнями напряжениями в 14 и 42 В). Для гибкого изменения выходной мощности в соответствии с требуемой максимальной величиной представляется целесообразным использовать с выходной стороны схему с параллельным включением n отдельных преобразователей. Подобная конфигурация показана на фиг.1.

Источником входного напряжения при этом является, например, генератор транспортного средства. Если для каждого преобразователя предусмотрено автономное регулирование напряжения, то в системе могут возникать колебания, обусловленные паразитной связью из-за наличия на выходной стороне общего соединения этих преобразователей постоянного напряжения.

Задача изобретения
В основу настоящего изобретения была положена задача повысить мощность преобразователей постоянного напряжения за счет контролируемого управления параллельной работой нескольких отдельных преобразователей при одновременном предотвращении указанных выше колебаний, обусловленных паразитной связью. Эта задача решается с помощью устройства и способа управления параллельной работой преобразователей постоянного напряжения, представленных в главном пункте, а также в зависимых пунктах формулы изобретения.

Преимущества изобретения
Преимущество указанного принципа распределения нагрузки, заявленного в п. 1 формулы изобретения, состоит в устранении в системе из параллельно работающих регуляторов напряжения опасности возникновения колебаний, обусловленных паразитной связью между ними. Пространственно преобразователи могут быть расположены близко друг к другу или отдельно друг от друга. В отличие от известных способов обмен информацией между преобразователями должен происходить только в момент переключения. Для этой цели достаточно использовать соединение с малой шириной полосы пропускания (например CAN-шину). Преимущество последовательной схемы контроля заключается в возможности использовать преобразователи одинаковой конструкции.

Другие преимущества изобретения представлены в зависимых пунктах формулы.

Чертежи
Ниже изобретение более подробно поясняется на примере некоторых вариантов его выполнения со ссылкой на прилагаемые чертежи, на которых показано:
на фиг.1 — схема параллельного модульного включения нескольких преобразователей,
на фиг.2 — пример распределения текущей потребности в мощности,
на фиг.3 — иерархическая схема контроля,
на фиг.4 — система с последовательной схемой контроля.

Описание
На фиг. 1 показана схема параллельного модульного включения нескольких преобразователей 1, 2. n постоянного напряжения (DC/DC), которая позволяет гибко изменять выходную мощность в соответствии с требуемой максимальной величиной и которая может применяться согласно изобретению. При этом входное напряжение, например напряжение электрической бортовой сети транспортного средства, обозначено через U 1 , а выходное напряжение преобразователей постоянного напряжения обозначено через U 2 . В электрической бортовой сети с двумя уровнями напряжения соответствующие значения напряжений составляют, например, 14 и 42 В.

Если для каждого преобразователя 1, 2. n постоянного напряжения предусмотрено автономное регулирование напряжения, то в системе могут возникать колебания, обусловленные паразитной связью из-за наличия на выходной стороне общего соединения этих преобразователей постоянного напряжения. Поэтому во избежание взаимного влияния регуляторов целесообразно сократить их число до одного единственного активного регулятора напряжения. При этом необходимая потребная мощность распределяется между (n-1) преобразователями, которые работают либо в режиме полной нагрузки, либо в режиме холостого хода, и еще одним преобразователем, который осуществляет регулирование напряжения в режиме частичной нагрузки.

На фиг.2 показан пример распределения нагрузки по пяти параллельно включенным преобразователям. Преобразователи 1, 2 и 3 работают в режиме полной нагрузки, и их выходной ток имеет максимальную величину. Преобразователь 4 берет на себя функцию по регулированию напряжения и перекрывает «активный» диапазон изменения мощности. Преобразователь 5 работает в режиме холостого хода.

При этом такую концепцию регулирования можно представить следующим образом:
— если для покрытия потребности в мощности достаточно одного единственного преобразователя, то этот преобразователь берет на себя функции по регулированию выходного напряжения, а остальные преобразователи не работают;
— при превышении потребности в мощности той мощности, которую способен обеспечить один единственный преобразователь (преобразователь 1), этот преобразователь передает функцию по регулированию напряжения следующему преобразователю (преобразователю 2), при этом сам указанный преобразователь 1 переключается на работу в режиме полной нагрузки, а его выходной ток устанавливается на максимальную величину;
— при дальнейшем росте потребности в мощности на работу в режиме полной нагрузки последовательно переходят несколько преобразователей, при этом каждый следующий преобразователь соответственно берет на себя еще остающуюся часть нагрузки;
— в обратном случае при снижении потребности в мощности преобразователи последовательно переключаются с режима полной нагрузки на работу в режиме частичной нагрузки.

Для реализации описанной концепции можно использовать следующие схемы контроля.

Иерархическая схема контроля
При использовании иерархической схемы контроля центральный электронный блок контроля и управления берет на себя функции по координированию работы отдельных преобразователей. При этом в электронный блок от соответствующего активного в данный момент регулирующего напряжение преобразователя поступает информация о его текущей выходной мощности, и электронный блок управляет остальными преобразователями, работающими в режиме полной нагрузки или в режиме холостого хода. Подобная иерархическая схема контроля показана на фиг.3. Соответствующий электронный блок 6 контроля и управления может быть также встроен, например, в один из преобразователей, например в преобразователь 1. Обмен данными может происходить в режиме двухсторонней связи (в дуплексном режиме) по шине последовательного обмена (например по CAN-шине) или по отдельным сигнальным шинам 7, 8, 9.

Некоторые преобразователи постоянного напряжения не могут работать в режиме холостого хода. Они требуют наличия с выходной стороны определенной основной нагрузки. В этом случае необходимо согласование порогов переключения для дальнейшей передачи функции регулирования напряжения от одного преобразователя к другому. В этом случае порог подключения при увеличении потребляемой мощности будет равен не Р=Р макс , а P=P макс -P осн . Порог отключения при снижении потребляемой мощности равен в этом случае величине основной нагрузки Р оcн .

Если максимальный кпд используемых преобразователей лежит в диапазоне частичных нагрузок, то управляемые преобразователи для оптимизации кпд могут работать и в этом диапазоне частичных нагрузок. С этой целью центральный электронный блок 6 контроля и управления выдает соответствующий управляющий сигнал. При недостаточной общей отдаваемой мощности отдаваемую управляемыми преобразователями мощность можно дополнительно повысить до максимальной.

Последовательная схема (схема контроля)
При использовании последовательной схемы, такой как показанная на фиг.4, можно отказаться от применения центрального электронного блока контроля и управления по фиг.3. При этом каждый преобразователь может иметь одинаковое исполнение. Соединения осуществляются только через внешние вспомогательные схемные цепи.

Пуск системы может происходить, например, по команде включения ВКЛ для первого в цепи преобразователя. Этот преобразователь берет на себя функцию по регулированию напряжения. По достижении преобразователем 1 своей предельной мощности Р=Р макс выдается соответствующий сигнал, по которому инициируется передача преобразователю 2 функции по управлению напряжением. Этот сигнал указывает на достижение максимальной мощности. Таким образом, на выходе преобразователя 1 мощность, соответственно ток имеют максимальные значения. По мере увеличения потребности в мощности функция по управлению напряжением последовательно передается последующим преобразователям по сигналу Р=Р макс.
При уменьшении потребности в мощности активный в данный момент регулирующий напряжение преобразователь сигнализирует предшествующему преобразователю о достижении им своего режима холостого хода, передавая соответствующий сигнал, указывающий на то, что его мощность Р равна 0. С этого момента предшествующий преобразователь начинает работать как регулятор напряжения. Таким путем происходит постепенное переключение преобразователей на режим холостого хода, начиная в рассматриваемом примере с преобразователя 3 до преобразователя 1.

Читайте также:  Импульсный преобразователь напряжения для зарядки

Как уже было указано выше при описании варианта по фиг.3, в качестве порога переключения могут быть использованы также величина основной нагрузки или величина максимального кпд
Обмен данными и в этом случае может происходить по шине последовательного обмена (например по CAN-шине) или по отдельным сигнальным шинам.

Описанные выше устройства и соответствующие способы по управлению параллельной работой преобразователей постоянного напряжения можно использовать, например, в электрических бортовых сетях транспортных средств, однако равным образом они могут найти применение и в иных областях, где требуется преобразовывать большую мощность. Основополагающим при этом является то, что один из преобразователей работает в активном диапазоне изменения мощности, а все остальные работают либо в режиме полной нагрузки, либо в режиме холостого хода.

Источник

Параллельное и последовательное соединение источников питания Nextys

1.Параллельное соединение источников питания.

Современные способы применения импульсных источников питания (ИП) могут потребовать использования нескольких ИП в параллельной конфигурации.

Параллельное соединение ИП может быть применено в следующих случаях:

Для увеличения требуемой мощности нагрузки, путём использования одинаковых ИП

Для создания системы резервирования

Параллельное соединение ИП для увеличения требуемой мощности может быть использовано там, где:

a) Есть вероятность превышения номинальной нагрузки установленного ИП
б) Требуется увеличить мощность нагрузки там, где нет возможности повысить мощность ИП

PR используется там, где ответственная нагрузка не допускает потери питания.

1.1 Параллельное соединение ИП для увеличения мощности (РР)

Теоретически, в режиме увеличения мощности могут использоваться любые типы ИП, но на практике такой результат не всегда бывает удовлетворительным. Многие поставщики говорят о том, что их ИП допускают параллельное соединение, независимо от вариантов применения. Это не всегда справедливо. Идеально, для параллельного соединения различных ИП, они должны иметь идентичные выходные импедансы и максимально одинаковые выходные напряжения. Это не гарантируется с течением времени из-за нормального разброса выходных параметров и естественного старения. Кроме того, во время переходных режимов (например, запуск, перегрузка, короткое замыкание и т. п.), поведение системы может стать нестабильной.

Несбалансированные токи могут привести к преждевременному старению наиболее напряженных элементов, что отрицательно отразится на надежности всей системы.

Для того чтобы свести к минимуму паразитные токи между ИП, которые соединены параллельно, предлагаются следующие технические решения:

Специализированная шина распределения нагрузки (LSB). Это решение использует коммуникационную шину, соединяющую параллельно-включённые ИП. В основном, это решение используется для мощных и «продвинутых» ИП, таких как, например, NPS2400.

Специфические алгоритмы регулирования (SRA). Это решение, относительно дешевое, не нуждается в какой-либо коммуникационной шине и позволяет достичь хорошего естественного баланса тока между различными ИП. Это решение присутствует в большинстве ИП Nextys, например в NPSM121 /241/481 и NPST501 /721/961.

Использование внешнего активного модуля резервирования (ARM) например, как OR20 или OR50 от NEXTYS. В этом случае ARM играет роль балансировочного устройства выходного импеданса для двух питающих ИП. В этой конфигурации может использоваться любой ИП, но рекомендуется провести тест.

1.jpg
Рис.1. Рекомендуемая схема для параллельного соединения ИП

  1. Необходимо учесть, что реальная мощность системы не будет простой суммой мощностей ИП. Максимальная мощность не будет превышать 80% от суммы мощностей ИП. Неидеальное решение!
  2. Используйте, по-возможности, одинаковые ИП и лучше всего из одной партии
  3. Избегайте использования ИП с ограничениями по току, предпочтительнее использовать ИП в режиме с постоянным током (Constant Current).
  4. Используйте не более 4-х ИП
  5. Разместите блоки таким образом, чтобы обеспечить максимально возможную одинаковую рабочую температуру для каждого ИП
  6. Перед параллельным соединением установите выходные напряжения максимально одинаковые для всех ИП при нагрузке примерно 10% от номинальной
  7. Используйте одинаковые длины и сечения проводов от каждого блока к нагрузке. Выводы должны сходиться на нагрузке, а не на ИП. Это улучшает симметрию. НЕ ВКЛЮЧИТЕ ВЫХОДЫ ИП ПОСЛЕДОВАТЕЛЬНО!
  8. Проконтролируйте распределение тока через 30 мин после включения и снова отрегулируйте выходные напряжения, чтобы уравновесить токи

1.2 Параллельное соединение ИП для резервирования (РR)

Резервирование необходимо для повышения надёжности системы питания. Идея концепции резервирования заключается в том, чтобы обеспечить необходимое питание системы в случае аварии, то есть номинальный ток всей системы должен оставаться доступным в любой ситуации. Это означает, что суммарный ток должен быть обеспечен несколькими ИП.

В дополнение к необходимым ИП, по крайней мере, еще один прибор должен будет использоваться, как резервное устройство, которое должно быть доступно в случае отказа одного из ИП (избыточность n + 1, где n – количество необходимых ИП). Чем больше количество используемых дополнительных ИП, тем выше отказоустойчивость системы (n + m избыточность, m = количество дополнительных ИП).

Для реализации надежной системы резервирования, выходы всех источников питания должны быть подключенных параллельно и развязаны с помощью диодов или МОП-транзисторов (ORing резервирование). Это необходимо, чтобы отказ одного из устройств не привёл к возникновению неисправности или короткого замыкания для других устройств. ORing схемы могут быть размещены в самих ИП или обеспечены внешними модулями резервирования, например такими, как OR20 или OR50 от NEXTYS.

В качестве совершенно уникальной функции, большинство моделей ИП от NEXTYS, имеющих опцию «P», предоставляют версию, включающую внутреннюю схему резервирования ORing, которая позволяет строить PR-систему без использования внешних модулей, резко снижая стоимость и размер систем PR.

2.jpg 3.jpg
Рис.2 PR схема резервирования с ORing диодами (могут быть интегрированы в ИП) Рис.3 PR схема резервирования с внешним ORing модулем

Основные правила реализации PR схем резервирования, изображённых на рис. 2, 3:

  1. Определите параметр «m», чтобы достичь требуемой избыточности.
  2. Обратите внимание на номинал тока и напряжения, предполагая, что один ИП может принять на себя всю нагрузку.
  3. Используйте всегда одинаковые ИП, лучше всего ИП из одной партии.
  4. При правильной подстройке выходного напряжения попытайтесь сбалансировать токи на всех устройствах, чтобы поддерживать все ИП в рабочем состоянии («горячий» резерв). Использование всех ИП в рабочем состоянии увеличивает срок службы системы.
  5. Разместите блоки таким образом, чтобы обеспечить максимально возможную рабочую температуру для каждого ИП.
  6. Используйте одинаковую длину и толщину проводов от каждого ИП к нагрузке. Это улучшает симметрию системы.

2. Последовательное соединение ИП.

Для различных приложений может потребоваться использование нескольких ИП с последовательным соединением (SC) их выходов. ИП в последовательной конфигурации могут использоваться в основном для достижения необходимого уровня напряжения или мощности, недоступных для стандартных блоков.

Теоретически любые 2 или более ИП могут быть соединены последовательно, независимо от их выходных напряжений. Однако внимание этому должно быть уделено в любом случае.

  1. Максимальный доступный ток в системе — это номинальный ток одного ИП.
  2. Общая суммарная мощность системы представляет собой произведение между суммой напряжений и самым высоким номинальным током ИП. Для систем SC нет снижения номинальных характеристик.
  3. Блоки с различными входными / выходными напряжениями / мощностью могут быть соединены последовательно.
  4. Текущее ограничение системы по току будет соответствовать тому ИП, у которого самое низкое значение номинального выходного тока.
4.jpg
Рис.4 Рекомендуемое последовательное соединение ИП .

Основные правила реализации SC схем резервирования, изображённых на рис. 4:

  1. Постарайтесь использовать одинаковые ИП, возможно, поставляемые из одной серии.
  2. Обратите внимание на потребляемый ток нагрузки, чтобы не перегружать какой-нибудь ИП.
  3. ИП могут иметь разное время запуска. Чтобы избежать обратного напряжения на их выходах из-за более раннего начала работы некоторых блоков в системе, используйте антипараллельные диоды (рассчитанные на максимальное напряжение системы и с пиковым импульсным током, по крайней мере равным номинальному току), которые должны быть подключены к каждому выходу.
  4. Обратите внимание на правила безопасности в отношении напряжения системы, если оно превышает опасные уровни (> 60 Vdc)

Применяйте нужное сечение провода, который используется в подключении ИП к нагрузке.

Избегайте слишком большого количества ИП (> 4) в SC соединении.

3. Заключение

Несмотря на широкое использование параллельного соединения ИП, рекомендуется избегать конфигурации PP. Вместо этого предпочтительно использовать соединение SC, что дает лучшую стабильность в использовании ИП.

Конфигурация PR полезна во многих критически важных приложениях, и мы настоятельно рекомендуем разработчикам именно это соединение. Рассмотрите этот вариант, используя адекватное соединение оценки потребляемой мощности и избыточности (посредством внутреннего ORing или внешнего резервирования).

194044, Санкт-Петербург
Большой Сампсониевский проспект, д. 45А оф. 134

Телефон: (812) 648-21-98
Телефон: (812) 648-21-58
Телефон: (812) 325-13-95
Факс: (812) 325-40-92
Электронная почта: info@west-l.ru

107076, Москва, Колодезный пер.
д. 3, стр. 4 (на территории ООО «Красный Дом»), оф. 209

Телефон: (495) 781-35-79
Телефон: (495) 215-01-91
Факс: (495) 781-59-58
Электронная почта: msk@west-l.ru

Просим обратить Ваше внимание на то, что данный сайт носит информационный характер и не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации. Цены в каталоге указаны без НДС. Для получения детальной информации о стоимости компонентов и сроках поставки обращайтесь к нашим менеджерам.

Источник

Adblock
detector