Обмотка высшего напряжения однофазного трансформатора

Что такое трансформатор напряжения и как он работает?

Для передачи электроэнергии на большие расстояния напряжения электрического тока с помощью силовых трансформаторов повышают до сотен тысяч вольт. Поскольку высокие напряжения очень опасны, то для работы электроприборов используют ток после силового понижающего трансформатора. Однако на всей протяженности ЛЭП установлено множество защитных устройств. Для отделения напряжений цепей этих приборов от потенциалов линий электропередач применяют трансформатор напряжения (ТН).

Приборы этого типа часто используются для безопасного способа подключения измерительных приборов. Задача ТН состоит в преобразовании высоковольтных токов линий (свыше 6 кВ) до безопасного уровня. Применение таких трансформаторов удешевляет эксплуатацию энергосистем за счет снижения затрат на изоляцию оборудования, работающего в низковольтных сетях.

Устройство и принцип действия

Конструктивно ТН особо не отличается от других типов преобразующих устройств. Его устройство:

  • магнитный сердечник, шихтованный из пластин электротехнической стали;
  • первичная катушка;
  • одна или две вторичные обмотки;
  • защитный кожух (для конструкций уличного типа).

Внешний вид и схематическое изображение изделия смотрите на рис.1. На картинке изображено устройство с одной (основной) вторичной обмоткой. На некоторых моделях есть дополнительная вторичная обмотка, которая может использоваться, например, для подключения приборов измерения.

Обратите внимание на то, что между выводами первичных обмоток и вторичными катушками отсутствует гальваническая связь. Это главное отличие измерительных трансформаторов от конструкции обычного понижающего трансформатора.

Защитные кожухи изготовляются из разных материалов. В моделях, используемых для обслуживания высоковольтных ЛЭП, применяют диэлектрики, изготовленные из фарфора (рис. 2),

Для охлаждения обмоток таких высоковольтных агрегатов применяют специальные трансформаторные масла.

В сетях средней мощности применяют модели с корпусами на основе эпоксидных смол (рис. 3).

Трехфазные ТН с нулевыми выводами выполняются на магнитопроводе с пятью стержнями. Такая конструкция защищает обмотки от перегрева, так как при однофазных замыканиях в цепях высоковольтных проводов цепь линий суммарного магнитного потока в самом трансформаторе замыкается по стали сердечника.

Принцип действия также мало отличается от работы силового понижающего трансформатора. Магнитный поток, возникающий в первичной катушке, распространяется по магнитопроводу, вызывая напряжение ЭДС во вторичной обмотке. Величина напряжения зависит от соотношения числа витков в катушках. Поскольку вторичные обмотки состоят из малого количества витков, то и выходное напряжение небольшое (обычно оно не превышает 100 В).

Принцип работы ТН объясняет схема на рисунке 4.

Важной задачей при изготовлении трансформаторов данного типа является выполнение требований по достижению необходимых амплитудных и угловых параметров синусоиды, определяющих соответствующий класс точности: 0,5; 1; 3. В эталонных образцах применяется класс точности 0,2. Для измерительных приборов важно чтобы класс точности был максимально высоким. Чем он выше, тем меньшая погрешность измерения прибора.

Точность параметров преобразованных переменных токов зависит от нагрузки. Чем выше нагрузка вторичной цепи, тем больше погрешность трансформатора напряжения (снижается класс точности). Оптимальные параметры напряжения на выходе трансформатора достигаются при номинальных нагрузках. В этом режиме эффективность преобразования тока возрастает по мере приближения к номинальному коэффициенту трансформации.

Работа ТН эффективна при малых номинальных мощностях во вторичных цепях. Для этих устройств длительное состояние в режиме холостого хода является нормой. Поэтому они эффективно используются в системах защиты линий, которые большую часть времени находятся в режиме ожидания и потребляют мало тока.

Разновидности

По конструкции и способам подключения трансформаторы напряжения классифицируются следующим образом:

  • двухобмоточный ТН (состоит из первичной катушки и основной вторичной обмотки);
  • трехобмоточный (имеет две вторичные обмотки. Одна из них является основной, а другая – дополнительной);
  • заземляемый (конструкция однофазных ТН у которых один вывод первичной обмотки уходит на землю.В моделях трехфазных ТН наглухо заземлены все нейтрали);
  • незаземляемый;
  • тип каскадных трансформаторов (первичную обмотку образуют каскады из секций);
  • семейство емкостных трансформаторов, конструкция которых содержит элементы емкостных делителей;
  • модели антирезонансных трансформаторов (см. рис. 5).

Можно отдельно выделить низковольтные конструкции, которые используются в некоторых электронных устройствах. Данный класс электронных трансформаторов применяют в тех случаях, когда в электронных схемах необходима развязка, отделяющая цепи высоких напряжений от низких.

Расшифровка маркировки

Для различения разновидностей моделей к ним применяют буквенную маркировку:

  • Н – трансформатор напряжения;
  • Т – трехфазная модель;
  • О – однофазный ТН;
  • С – сухой (воздушное охлаждение);
  • М – масляный;
  • А – антирезонансные модели;
  • К – каскадные устройства;
  • Ф – фарфоровый тип корпуса;
  • И – пятистержневой трансформатор, содержащий обмотку для контроля изоляции;
  • Л – конструкции в литом корпусе;
  • ДЕ – емкостные;
  • З – заземляемые (первичную катушку необходимо заземлять).

Технические параметры

Основные сведения указываются на шильдике трансформатора напряжения.

Технические параметры трансформаторов:

  • величина напряжения на первичном фазном входе;
  • напряжение на выводах вторичных фазных обмоток;
  • коэффициенты мощности;
  • максимальные напряжения короткого замыкания.

К важным сведениям относится параметры номинальной частоты и класс точности для номинального коэффициента трансформации. На некоторых моделях изготовители указывают угловые погрешности и допустимые погрешности напряжений.

Схемы подключения

Простейшая схема подключения применяется в пунктах обслуживания линий под напряжением 6 – 10 кВ. Подключенные по такой схеме трансформаторы используются для включения вольтметра и подачи напряжений на реле устройства АВР. Пример такой схемы показан на рис. 7.

На рисунке 8 приведена схема, применяемая для включения однофазных трансформаторов с целью подачи безопасного напряжения на нагрузки, запитанные от вторичных обмоток. В данной схеме использовано группу однофазных трансформаторов, катушки которых соединены по принципу звезды. Обратите внимание, что первичные обмотки соединены с глухозаземленной нейтралью.

Данная схема применяется в сетях 0,5 – 10 кВ для подключения измерительных приборов, счетчиков. По аналогичной схеме подключаются вольтметры, используемые для контроля изоляции.

Схема эффективна для приема сигналов, свидетельствующих об однофазных замыканиях на землю. Существуют и другие схемы подключений, в частности по типу соединения открытого треугольника. Особенность таких схем в том, что мощность группы из двух ТН меньше мощности трех устройств соединенных по схеме полного треугольника не в 1,5 раза, а в √3 раз.

В некоторых схемах применяется комбинированное соединение обмоток. Для этого подходит соединение «треугольник – звезда». В работе таких схем номинальное напряжение составляет 173 В. Указанный способ подключения применяется в системах регулирования возбуждения обмоток генераторов и компенсаторов.

Применение

Основное применение первичных преобразователей напряжений – подача питания на обмотки измерительных приборов и подключение реле защиты в сетях 380 В и выше. Трансформаторы позволяют расширить диапазоны измерений и изоляцию реле от высоких межфазных потенциалов. Включение выводов первичных обмоток между фазой и землей дает возможность градуировать шкалы приборов с учетом коэффициента трансформации, что позволяет контролировать первичные параметры линий ЛЭП.

Изменение параметров напряжений в первичных цепях влияет на поведение переменных магнитных потоков. Эти возмущения фиксируются вторичными обмотками, которые реагируют изменением амплитуды тока и частоты колебаний. Сигналы поступают на различные защитные устройства, которые автоматически отключают участки линий с КЗ и с другими критичными отклонениями.

Источник

Трансформатор

Содержание

  1. Трансформатор напряжения
  2. Обмотки трансформатора
  3. Как работает трансформатор
  4. Формула трансформатора
  5. Типы трансформаторов по конструкции
  6. Однофазные трансформаторы
  7. Трехфазные трансформаторы
  8. Типы трансформаторов по напряжению
  9. Понижающий трансформатор
  10. Повышающий трансформатор
  11. Разделительный или развязывающий трансформатор
  12. Согласующий трансформатор
  13. Работа понижающего трансформатора на практике
  14. Как проверить трансформатор
  15. Как проверить на короткое замыкание обмоток
  16. Проверка на обрыв обмоток

Слово “ трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

а с другой катушки два красных провода

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Источник

Учебные материалы

Однофазный трансформатор имеет замкнутый ферромагнитный сердечник, на который намотаны первичная и вторичная обмотки с числом витков W1 и W2.

Для уменьшения вихревых токов ферромагнитный сердечник набирается из отдельных пластин электротехнической трансформаторной стали толщиной 0,35 или 0,5 мм.

На схеме трансформатора приняты условно положительные направления всех величин, характеризующих электромагнитные процессы в трансформаторе, исходя из предпосылки, что первичная обмотка трансформатора является приемником электрической энергии, а вторичная обмотка является источником.

ферромагнитный сердечник

Работа трансформатора основана на законе электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W:

В первичной обмотке ЭДС самоиндукции

во вторичной обмотке ЭДС взаимоиндукции

При подключении нагрузки Zн к выводам вторичной обмотки трансформатора под действием ЭДС в обмотке потечет ток I2, а на выводах установится напряжение U2.

Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего напряжения (ВН). Обмотку, подключенную к сети меньшего напряжения, называют обмоткой низшего напряжения (НН).

Коэффициентом трансформации К трансформатора называют отношение ЭДС обмотки ВН (числа витков Wвн) к ЭДС обмотки НН (числа витков Wнн):

Коэффициент трансформации

Трансформаторы обладают свойством обратимости, то есть один и тот же трансформатор можно использовать в качестве повышающего и понижающего.

Трансформатор – это аппарат переменного тока и на постоянном токе не работает, так как протекающий по первичной обмотке постоянный ток будет создавать постоянный магнитный поток. В соответствии с законом электромагнитной индукции поток должен изменяться как по величине, так и по направлению.

В режиме нагрузки трансформатора первичный и вторичный токи I1, I2 кроме основного магнитного потока Фо, создают магнитные потоки рассеяния Ф σ 1 и Ф σ 2 , влиянием которых обусловлено существование индуктивных сопротивлений первичной и вторичной обмоток трансформатора Х1 и Х2.

Активное и полное сопротивления первичной обмотки трансформатора обозначаются R1 и Z1, а вторичной -R2 и Z2.

Работа трансформатора в общем случае описывается системой уравнений:

Работа трансформатора

где I0 – ток холостого хода.

Уравнение (1) и (2) представляют собой уравнения равновесия ЭДС первичной и вторичной обмоток, уравнение (3) представляет собой уравнение равновесия намагничивающих сил (I ⋅ W) трансформатора. Намагничивающая (магнитодвижущая) сила это произведение тока на число витков обмотки.

Выполнив преобразования в уравнении (3) получим:

Из уравнения (4) следует, что ток I1 первичной обмотки трансформатора можно рассматривать состоящим из двух составляющих: одна составляющая I0 определяет, основной магнитный поток Ф0, а вторая составляющая

компенсирует размагничивающее действие тока I2 вторичной обмотки. Из сказанного следует, что магнитный поток в трансформаторе не зависит от тока нагрузки и пропорционален приложенному напряжению.

Если пренебречь током холостого хода I0 (составляет несколько процентов I1) трансформатора, протекающего по первичной обмотке (при разомкнутой вторичной обмотке), то можно считать токи, в обмотках трансформатора обратно пропорциональными числам витков.

Возможны следующие режимы работы трансформатора:

  1. режим холостого хода;
  2. режим короткого замыкания (аварийный режим и опыт короткого замыкания);
  3. режим нагрузки.

В режиме холостого хода трансформатор работает при разомкнутой вторичной обмотке.

При этом существуют следующие соотношения:

Мощность холостого хода Р0, потребляемая трансформатором из сети, определяется в основном потерями в стали Рс сердечника.

P0 ≈ Pc (составляет 1-2% номинальной мощности)

Потери в стали складываются из потерь на перемагничивание ферромагнитного материала сердечника и потерь на вихревые токи, которые наводятся в сердечнике в соответствии с законом электромагнитной индукции. Для уменьшения потерь на вихревые токи сердечник изготавливают из тонких пластин (0,3-0,5 мм), изолированных друг от друга.

Опыт холостого хода трансформатора проводится для определения коэффициента трансформации К и мощности электрических потерь в стали сердечника.

Опыт короткого замыкания трансформатора проводится для определения мощности электрических потерь в обмотках трансформатора (потерь в меди Рм). При проведении опыта короткого замыкания вторичная обмотка трансформатора замыкается накоротко, при этом к первичной обмотке подводится пониженное напряжение U, составляющее 5-10% от номинального. Во время проведения опыта контролируют токи в обмотках трансформатора и прекращают опыт, когда токи в обмотках достигнут номинальных значений.

В паспортные данные трансформатора заносится ток холостого хода в процентах от номинального значения, мощность потерь в обмотках и напряжение в опыте короткого замыкания, выраженное в процентах от номинального.

Режимом нагрузки трансформатора называется такой режим его работы, когда вторичная обмотка подключена на сопротивление нагрузки Zн.

Мощность Р1, потребляемая трансформатором из сети в режиме нагрузки определяется по формуле:

где Р2 — мощность нагрузки;

ΣР – суммарные потери трансформатора (в стали и меди).

Коэффициент полезного действия трансформатора

Коэффициент полезного действия трансформатора

имеет максимальное значение при равенстве потерь в проводах обмоток и потерь в стали сердечника

Трансформатор конструируется так, чтобы η max имел место при наиболее вероятной нагрузке составляющей (0,5 – 0,75) Р2 ном..

У работающего под нагрузкой трансформатора напряжение вторичной U2 отличается от напряжения холостого хода U20 на величину падения напряжения на полном сопротивлении его вторичной обмотки

которая называется изменением напряжения трансформатора

Для трансформаторов, выпускаемых промышленностью, величина Δ U составляет 6-8 % от U2 ном. (вторичного номинального напряжения). Полезно знать, что по напряжению короткого замыкания U, полученного в опыте короткого замыкания, можно судить об отклонении напряжения вторичной обмотки трансформатора от его номинального значения при номинальном токе (нагрузке).

Изменение напряжения в трансформаторе зависит не только от значений токов первичной и вторичной обмоток I1 и I2, но и от рода нагрузки (активной, индуктивной или емкостной).

Внешняя характеристика трансформатора это зависимость напряжения U2 вторичной обмотки от протекающего по ней тока I2, U2=f(I2).

Внешняя характеристика трансформатора

Рис. 13. Внешняя характеристика трансформатора

Векторную диаграмму трансформатора строят на основании уравнений равновесия ЭДС первичной и вторичной обмоток и уравнения равновесия намагничивающих сил трансформатора (уравнения 1, 2, 3).

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector