Меню

Напряжение источника при зарядке конденсатора это

Зарядка и разрядка конденсатора

Зарядка конденсатора. Если присоединить конденсатор к источнику постоянного тока (рис. 129 ), то на обкладках конденсатора, как известно, будут накапливаться электрические заряды q, т.е. будет происходить процесс зарядки конденсатора. Во время зарядки в цепи протекает ток

(11-1)

Следовательно, зарядный ток конденсатора пропорционален скорости изменения напряжения на обкладках конденсатора.

Рассмотрим процесс изменения напряжения на конденсаторе и тока в цепи во время зарядки конденсатора, т.е. в отрезке времени от момента подключения цепи к источнику постоянного напряжения до момента полной зарядки конденсатора, что соответствует переходному процессу в RC- цепи.

Уравнение электрического состояния согласно второго закона Кирхгофа имеет вид:

. (11-2)

Подставим значение тока в последнее выражение

или

Разделив переменные, получим

.

Произведение сопротивления и емкости

(11-3)

называют постоянной времени цепи. Размерность постоянной времени

.

(11-4)

Это выражение представляет собой дифференциальное уравнение, отражающее характер изменения напряжения на обкладках конденсатора во время переходного процесса.

Решим это уравнение и построим график зависимости Проинтегрируем уравнение

После интегрирования получим

где постоянная интегрирования.

Значение постоянной интегрирования определим из начальных условий. В момент включения напряжение на конденсаторе равно нулю следовательно

т.е.

Это уравнение можно переписать так:

Приведем левую часть равенства под знак логарифма, получим

Решая последнее уравнение относительно найдем

. (11-5)

Это выражение показывает, что напряжение на конденсаторе изменяется по экспоненциальному закону.

Теоретически процесс зарядки длится бесконечно долго, так как напряжение станет равным U только при

Для построения графика определим значения для различных моментов времени:

при

t =

Из рис. 130а видно, что процесс зарядки практически заканчивается через 4-5 . Причем, чем больше , тем больше времени потребуется, чтобы напряжение на конденсаторе достигло значения . Следовательно, по постоянной времени можно определять продолжительность переходного процесса. Так как то чем больше и С, тем медленнее происходит процесс зарядки конденсатора.

Приложенное напряжение для — цепи по величине является тем пределом, к которому стремится напряжение на конденсаторе, поэтому чем больше , тем больше С. Однако величина не влияет на характер кривой , так как характер ее изменения зависит от множителя т.е. от параметров R и C.

Падение напряжения на резистивном элементе

Подставив в это выражение

(11-6)

Видно, что напряжение на резистивном элементе убывает по экспоненциальному закону.

Ток, проходящий по резистивному элементу, а следовательно, и по цепи (рис.130б),

(11-7)

где

Выражение показывает, что ток в цепи изменяется также по убывающей экспоненте, имея максимум в момент включения цепи, т.к. при а после зарядки конденсатора при

Разрядка конденсатора. На рис. 131 показана схема при разрядке конденсатора на резистивный элемент.

Рассмотрим характер изменения и при разрядке конденсатора. Если конденсатор, заряженный до напряжения U, соединить с некоторым резистивным элементом R, то в цепи появится ток, заряды с обкладок начнут убывать и, следовательно, конденсатор будет разряжаться. Ток в цепи определяется скоростью убывания зарядов на обкладках конденсатора: . (11-8)

Знак минус свидетельствует о убывании зарядов на обкладках конденсатора.

Уравнение электрического состояния цепи при разрядке конденсатора имеет вид:

(11-9)

Подставив в это выражение значение тока, получим

Так как то

Разделив переменные, определим

(11-10)

Это выражение представляет собой дифференциальное уравнение, отражающее характер изменения напряжения на конденсаторе при разрядке на резистивный элемент. После интегрирования уравнения ( 11-10 ), получим

Значение постоянной интегрирования определим из начальных условий. В момент включения цепи ( напряжение на конденсаторе Следовательно, откуда т.е. Тогда

=

. (11-11)

Это выражение показывает, что напряжение на конденсаторе при его разрядке изменяется по закону убывающей экспоненты.

Анализ кривой (рис. 132 ) подтверждает, что процесс разрядки конденсатора не может происходить мгновенно, и, следовательно, напряжение уменьшается не скачком, а плавно убывает со временем до нуля.

Переходный процесс поддерживается энергией, накопленной в электрическом поле конденсатора. Запас энергии непрерывно сокращается, а следовательно, уменьшается напряжение на конденсаторе.

Читайте также:  Регулятор напряжения втн калина

Разрядный ток в цепи по закону Ома

(11-12)

График при зарядке конденсатора аналогичен (рис. 130б) графику при его разрядке.

Саморазрядка конденсатора. Если конденсатор не подключать к резистивному элементу, то с течением времени он разрядится. Это объясняется тем, что практически диэлектрик конденсатора обладает хотя и малой, но отличной от нуля проводимостью, и поэтому конденсатор разряжается через диэлектрическую среду , из которой он изготовлен. Разрядку конденсатора через диэлектрик называют саморазрядкой.

Постоянная времени саморазрядки Практически саморазрядку можно считать законченной через время

Определим постоянную времени саморазрядки плоского конденсатора. Считая

получим

(11-13)

Таким образом, постоянная времени саморазрядки конденсатора зависит только от свойств диэлектрика ( и не зависит от формы конденсатора.

Источник



Напряжение источника при зарядке конденсатора это

Присоединим цепь, состоящую из незаряженного конденсатора емкостью С и резистора с сопротивлением R, к источнику питания с постоянным напряжением U (рис. 16-4).

Так как в момент включения конденсатор еще не заряжен, то напряжение на нем Поэтому в цепи в начальный момент времени падение напряжения на сопротивлении R равно U и возникает ток, сила которого

Рис. 16-4. Зарядка конденсатора.

Прохождение тока i сопровождается постепенным накоплением заряда Q на конденсаторе, на нем появляется напряжение и падение напряжения на сопротивлении R уменьшается:

как и следует из второго закона Кирхгофа. Следовательно, сила тока

уменьшается, уменьшается и скорость накопления заряда Q, так как ток в цепи

С течением времени конденсатор продолжает заряжаться, но заряд Q и напряжение на нем растут все медленнее (рис. 16-5), а сила тока в цепи постепенно уменьшается пропорционально разности — напряжений

Рис. 16-5. График изменения тока и напряжения при зарядке конденсатора.

Через достаточно большой интервал времени (теоретически бесконечно большой) напряжение на конденсаторе достигает величины, равной напряжению источника питания, а ток становится равным нулю — процесс зарядки конденсатора заканчивается.

Практически принято считать, что процесс зарядки закончился, когда ток уменьшился до 1% — начального значения или, — что то же, когда напряжение на конденсаторе достигло 99% напряжения источника питания

Процесс зарядки конденсатора тем продолжительней, чем больше сопротивление цепи R, ограничивающее силу тока, и чем больше емкость конденсатора С, так как при большой емкости должен накопиться больший заряд. Скорость протекания процесса характеризуют постоянной времени цепи

чем больше , тем медленнее процесс.

Постоянная времени цепи имеет размерность времени, так как

Через интервал времени с момента включения цепи, равный , напряжение на конденсаторе достигает примерно 63% напряжения источника питания, а через интервал процесс зарядки конденсатора можно считать закончившимся.

Напряжение на конденсаторе при зарядке

т. е. оно равно разности постоянного напряжения источника питания и свободного напряжения убывающего с течением времени по закону показательной функции от значения U до нуля (рис. 16-5).

Зарядный ток конденсатора

Ток от начального значения постепенно уменьшается по закону показательной функции (рис. 16-5).

б) Разряд конденсатора

Рассмотрим теперь процесс разряда конденсатора С, который был заряжен от источника питания до напряжения U через резистор с сопротивлением R (рис. 16-6, Где переключатель переводится из положения 1 в положение 2).

Рис. 16-6. Разряд конденсатора на резистор.

Рис. 16-7. График изменения тока и напряжения при разрядке конденсатора.

В начальный момент, в цепи возникнет ток и конденсатор начнет разряжаться, а напряжение на нем уменьшаться. По мере уменьшения напряжения будет уменьшаться и ток в цепи (рис. 16-7). Через интервал времени напряжение на конденсаторе и ток цепи уменьшатся при мерно до 1% начальных значений и процесс разряда конденсатора можно считать закончившимся.

Напряжение на конденсаторе при разряде

т. е. уменьшается по закону показательной функции (рис. 16-7).

Разрядный ток конденсатора

т. е. он, так же как и напряжение, уменьшается по тому же закону (рис. 6-7).

Вся энергия, запасенная при зарядке конденсатора в его электрическом поле, при разряде выделяется в виде тепла в сопротивлении R.

Читайте также:  Тестер напряжения что это такое

Электрическое поле заряженного конденсатора, отсоединенного от источника питания, не может долго сохраняться неизменным, так как диэлектрик конденсатора и изоляция между его зажимами обладают некоторой проводимостью.

Разряд конденсатора, обусловленный несовершенством диэлектрика и изоляции, называется саморазрядом. Постоянная времени при саморазряде конденсатора не зависит от формы обкладок и расстояния между ними.

Процессы зарядки и разряда конденсатора называются переходными процессами.

Источник

Заряд и разряд конденсатора

Для того чтобы зарядить конденсатор, необходимо включить его в цепь постоянного тока. На рис. 1 показана схема заряда конденсатора. Конденсатор С присоединен к зажимам генератора. При помощи ключа можно замкнуть или разомкнуть цепь. Рассмотрим подробно процесс заряда конденсатора.

Генератор обладает внутренним сопротивлением. При замыкании ключа конденсатор зарядится до напряжения между обкладками, равного э. д. с. генератора: Uс = Е. При этом обкладка, соединенная с положительным зажимом генератора, получает положительный заряд (+ q ), а вторая обкладка получает равный по величине отрицательный заряд ( -q ). Величина заряда q прямо пропорциональна емкости конденсатора С и напряжению на его обкладках: q = CUc

Схема заряда конденсатора

P ис. 1 . Схема заряда конденсатора

Для того чтобы обкладки конденсатора зарядились, необходимо, чтобы одна из них приобрела, а другая потеряла некоторое количество электронов. Перенос электронов от одной обкладки к другой совершается по внешней цепи электродвижущей силой генератора, а сам процесс перемещения зарядов по цепи есть не что иное, как электрический ток, называемый зарядным емкостным током I зар.

Зарядный ток в цени протекает обычно тысячные доли секунды до тех пор, пока напряжение на конденсаторе достигнет величины, равной э. д. с. генератора. График нарастания напряжения на обкладках конденсатора в процессе его заряда представлен на рис. 2,а, из которого видно, что напряжение Uc плавно увеличивается, сначала быстро, а затем все медленнее, пока не станет равным э. д. с. генератора Е. После этого напряжение на конденсаторе остается неизменным.

Графики напряжения и тока при заряде конденсатора

Рис. 2. Графики напряжения и тока при заряде конденсатора

Пока конденсатор заряжается, по цепи проходит зарядный ток. График зарядного тока показан на рис. 2,б. В начальный момент зарядный ток имеет наибольшую величину, потому что напряжение на конденсаторе еще равно нулю, и по закону Ома io зар = E/ R i , так как вся э. д. с. генератора приложена к сопротивлению R i.

По мере того как конденсатор заряжается, т. е. возрастает напряженно на нем, для зарядного тока уменьшается. Когда напряженно па конденсаторе уже имеется, падение напряжения на сопротивление будет равно разности между э. д. с. генератора и напряжением на конденсаторе, т. е. равно Е — U с. Поэтому i зар = (E-Uс)/R i

Отсюда видно, что с увеличением Uс уменьшается i зар и при Uс = E зарядный ток становится равным нулю.

Про закон Ома подробнее смотрите здесь: закон Ома для участка цепи

Продолжительность процесса заряда конденсатора зависит от двух величии:

1) от внутреннего сопротивления генератора R i ,

2) от емкости конденсатора С.

На рис. 2 показаны графики нарядных токов для конденсатора емкостью 10 мкф: кривая 1 соответствует процессу заряда от генератора с э. д. с. Е = 100 В и с внутренним сопротивлением R i = 10 Ом, кривая 2 соответствует процессу заряда от генератора с такой же э. д. с, но с меньшим внутренним сопротивлением: R i = 5 Ом.

Из сравнения этих кривых видно, что при меньшем внутреннем сопротивлении генератора сила нарядного тока в начальный момент больше, и поэтому процесс заряда происходит быстрее.

Графики зарядных токов при разных сопротивлениях

Рис. 2. Графики зарядных токов при разных сопротивлениях

На рис. 3 дается сравнение графиков зарядных токов при заряде от одного и того же генератора с э. д. с. Е = 100 В и внутренним сопротивлением R i = 10 ом двух конденсаторов разной емкости: 10 мкф (кривая 1) и 20 мкф (кривая 2).

Величина начального зарядного тока io зар = Е/ Ri = 100/10 = 10 А одинакова для обоих конденсаторов, по так как конденсатор большей емкости накапливает большее количество электричества, то зарядный его ток должен проходить дольше, и процесс заряда получается более длительным.

Читайте также:  Кабель сечения сколько выдерживает напряжение

Графики зарядных токов при разных емкостях

Рис. 3. Графики зарядных токов при разных емкостях

Отключим заряженный конденсатор от генератора и присоединим к его обкладкам сопротивление.

На обкладках конденсатора имеется напряжение U с, поэтому в замкнутой электрической цепи потечет ток, называемый разрядным емкостным током i разр.

Ток идет от положительной обкладки конденсатора через сопротивление к отрицательной обкладке. Это соответствует переходу избыточных электронов с отрицательной обкладки на положительную, где их недостает. Процесс рам ряда происходит до тех пор, пока потенциалы обеих обкладок не сравняются, т. е. разность потенциалов между ними станет равном нулю: Uc=0 .

На рис. 4, а показан график уменьшения напряжения на конденсаторе при разряде от величины Uc о =100 В до нуля, причем напряжение уменьшается сначала быстро, а затем медленнее.

На рис. 4,б показан график изменения разрядного тока. Сила разрядного тока зависит от величины сопротивления R и по закону Ома i разр = Uc / R

Графики напряжения и токов при разряде конденсатора

Рис. 4. Графики напряжения и токов при разряде конденсатора

В начальный момент, когда напряжение па обкладках конденсатора наибольшее, сила разрядного тока также наибольшая, а с уменьшением Uc в процессе разряда уменьшается и разрядный ток. При Uc=0 разрядный ток прекращается.

Продолжительность разряда зависит:

1) от емкости конденсатора С

2) от величины сопротивления R , на которое конденсатор разряжается.

Чем больше сопротивление R , тем медленнее будет происходить разряд. Это объясняется тем, что при большом сопротивлении сила разрядного тока невелика и величина заряда на обкладках конденсатора уменьшается медленно.

Это можно показать на графиках разрядного тока одного и того же конденсатора, имеющего емкость 10 мкф и заряженного до напряжения 100 В, при двух разных величинах сопротивления (рис. 5): кривая 1 — при R = 40 Ом, i оразр = Uc о/ R = 100/40 = 2,5 А и кривая 2 — при 20 Ом i оразр = 100/20 = 5 А.

Графики разрядных токов при разных сопротивлениях

Рис. 5. Графики разрядных токов при разных сопротивлениях

Разряд происходит медленнее также тогда, когда емкость конденсатора велика. Получается это потому, что при большей емкости на обкладках конденсатора имеется большее количество электричества (больший заряд) и для стекания заряда потребуется больший промежуток времени. Это наглядно показывают графики разрядных токов для двух конденсаторов раиной емкости, заряженных до одного и того же напряжения 100 В и разряжающихся на сопротивление R =40 Ом (рис. 6 : кривая 1 — для конденсатора емкостью 10 мкф и кривая 2 — для конденсатора емкостью 20 мкф).

Графики разрядных токов при разных емкостях

Рис. 6. Графики разрядных токов при разных емкостях

Из рассмотренных процессов можно сделать вывод, что в цепи с конденсатором ток проходит только в моменты заряда и разряда, когда напряжение на обкладках меняется.

Объясняется это тем, что при изменении напряжения изменяется величина заряда на обкладках, а для этого требуется перемещение зарядов по цепи, т. е. по цепи должен проходить электрический ток. Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

В процессе заряда конденсатор накапливает энергию, получая ее от генератора. При разряде конденсатора вся энергия электрического поля переходит в тепловую энергию, т. е. идет на нагрев сопротивления, через которое разряжается конденсатор. Чем больше емкость конденсатора и напряжение на его обкладках, тем больше будет энергия электрического поля конденсатора. Величина энергии, которой обладает конденсатор емкостью С, заряженный до напряжения U, равна: W = W с = С U 2 /2

Пример. Конденсатор С=10 мкф заряжен до напряжении U в = 500 В. Определить энергию, которая выделится в вило тепла на сопротивлении, через которое разряжается конденсатор.

Решение. Пpи разряде вся энергия, запасенная конденсатором, перейдет в тепловую. Поэтому W = W с = С U 2 /2 = (10 х 10 -6 х 500)/2 = 1,25 дж.

Источник

Adblock
detector