Меню

Мощность трансформатора постоянное напряжение

ТРАНСФОРМАТОРЫ ПОСТОЯННОГО НАПРЯЖЕНИЯ И ТОКА

При рассмотрении работы амплистата уже отмечалось, что для образования необходимой внешней характеристики тягового генератора потребовалось осуществить взаимосвязь рабочего тока амплистата с напряжением и током генератора. В амплистате для этого служит управляющая размагничивающая обмотка. В качестве источников ее питания применены вторичные обмотки распределительного трансформатора, в цепи которых включены трансформаторы постоянного напряжения и тока. Следовательно, на них возлагается задача регулирования тока в управляющей обмотке в зависимости от напряжения и тока тягового генератора; Уже названия этих электрических аппаратов показывают, что один из них осуществляет регулирование амплистата по величине напряжения генератора, а второй — по величине тока генератора.
По своему принципу действия трансформаторы постоянного напряжения и тока представляют собой простейшие магнитные усилители с одной рабочей и одной управляющей обмотками без обратных связей.
Трансформатор постоянного напряжения (рис. 226, а) имеет два тороидальных (круглых) сердечника, которые изготовлены из ленты пермаллоя толщиной 0,2 мм. Пермаллой представляет собой сплав железа и никеля с высокими ферромагнитными свойствами. На каждом сердечнике расположено по одной катушке рабочей обмотки; обмотка управления охватывает оба сердечника. Обмотки выполнены из медного провода диаметром 1 мм. Сердечники и обмотки залиты эпоксидным компаундом, предупреждающим попадание влаги в обмотки и обеспечивающим длительную надежную работу трансформаторов. Угольники, стянутые шпильками, служат для установки трансформатора на тепловозе. Обмотка управления трансформатора постоянного напряжения включена через резистор на выводы тягового генератора. Поэтому сила тока подмагничивания трансформатора пропорциональна напряжению генератора. Как в любом магнитном усилителе, ток в цепи рабочих обмоток пропорционален току подмагничивания и, следовательно, в данном случае пропорционален напряжению генератора. Иными словами, с увеличением напряжения тягового генератора пропорционально возрастает выходной ток трансформатора постоянного напряжения. В цепях автоматики используются слабые токи, поэтому максимальный выходной ток трансформатора не превышает 3 А.

Трансформаторы

Рис. 226. Трансформаторы а) постоянного напряжения (ТПН); б) постоянного тока (ТПТ)

Трансформатор постоянного тока (рис. 226, б) по устройству напоминает трансформатор постоянного напряжения, но не имеет специальной обмотки управления. Для подмагничивания трансформатора постоянного тока через центральное отверстие его тороидального сердечника пропущены гибкие провода силовой цепи. На тепловозах 2ТЭ10Л, 2ТЭ10В через трансформатор постоянного тока пропущены два провода, по которым проходит ток двух тяговых электродвигателей. При увеличении тока тяговых двигателей, а следовательно, и генератора усиливается подмагничивание трансформатора постоянного тока и возрастает выходной ток его рабочей обмотки. Таким образом, ток в рабочей цепи трансформатора пропорционален суммарному току двух тяговых электродвигателей. Максимальный ток в рабочей цепи трансформатора лишь незначительно превышает 3 А. Трансформатор постоянного тока как бы преобразует ток большой величины в силовой цепи в пропорциональный ему слабый ток для использования его в системе автоматического регулирования напряжения тягового генератора.
Суммарная масса амплистата и трансформаторов постоянного тока и напряжения составляет около 28 кг. Отсюда можно видеть, насколько легкими, компактными являются устройства переменного тока для регулирования напряжения тягового генератора. Эти устройства не имеют вращающихся трущихся частей, требующих смазки, ухода, ремонта, поэтому надежны и долговечны в эксплуатации.
Рассмотрим более подробно работу измерительных трансформаторов в схеме регулирования напряжения тягового генератора. На каждой секции тепловозов 2ТЭ10Л, 2ТЭ10В установлено по одному трансформатору постоянного напряжения ТПН и по четыре трансформатора постоянного тока ТПТ1—ТПТ4. Через первый трансформатор ПТ1 пропущены провода цепей первого и четвертого тяговых двигателей, через трансформатор ТПТ2 — пятого и шестого двигателей, через трансформатор ТПТЗ — третьего и шестого двигателей и через ТПТ4 — первого и второго двигателей. Применение четырех трансформаторов постоянного тока с подмагничиванием от тока различных двигателей позволило значительно улучшить противобоксовочные свойства тепловоза. На схеме, представленной на рис. 227, а, с целью упрощения показан один трансформатор постоянного тока и трансформатор постоянного напряжения. Рабочие обмотки обоих трансформаторов включены в цепь управляющей обмотки амплистата через узел электрических устройств, получивший название селективного, т. е. избирающего (от латинского слова selectio — отбор). Селективный узел имеет балластные резисторы СБТН и СБТТ, два выпрямительных моста В1 и В2, а также резистор СОУ в цепи управляющей обмотки амплистата ОУ.

Читайте также:  Параметры определяющие мощность взрыва

Схемы

Рис. 227 Селективный узел и характеристика тягового генератора

Предположим, что дизель-генератор тепловоза работает на 15-й позиции контроллера. Когда ток Iг в силовой цепи мал, напряжение Uг на выводах генератора достигает максимальных значений (рис. 227, б); сила тока в цепи рабочей обмотки трансформатора постоянного напряжения будет также наибольшей. Напряжение на резисторе СБТН, выпрямленное мостом В1, подается на участок цепи, состоящей из резисторов СОУ и управляющей обмотки ОУ амплистата. В то же время вследствие малого тока в силовой цепи будут незначительными ток в цепи рабочей обмотки трансформатора ТПТ и падение напряжения на резисторе СБТТ. Выпрямительный мост В2 окажется запертым повышенным напряжением, подаваемым от моста Б1; через управляющую обмотку амплистата проходит только ток цепи рабочих обмоток трансформатора TПН. Следовательно, трансформатор ТПТ отключен от цепи питания регулировочной обмотки. Так продолжается до тех пор, пока ток тягового генератора не достигнет значения Iгг, соответствующего точке Г его внешней характеристики. На участке характеристики ДГ с увеличением тока тягового генератора напряжение на его выводах будет несколько снижаться вследствие увеличения падения напряжения во внутренней цепи генератора и влияния реакции якоря. Однако одновременно уменьшается ток в обмотке управления трансформатора ТПН, а значит, и ток в цепи управляющей обмотки амплистата. В конечном итоге возбуждение генератора несколько усиливается. Благодаря этому предупреждается заметное снижение напряжения генератора. Например, на номинальном режиме работы дизель-генератора (nк =15) увеличение тока в силовой цепи почти до 3000 А приводит к уменьшению напряжения генератора лишь на 20В. При токе Iгг генератора падение напряжения на резисторах СБТН и СБТТ становится одинаковым, выпрямительный мост В2 открывается. Управляющая обмотка амплистата получает дополнительное питание (при сохранении питания от трансформатора ТПН). Дальнейший рост силы тока генератора вызывает усиление питания управляющей обмотки амплистата, обеспечивая снижение напряжения генератора по линейной характеристике ГБ. Этот процесс сопровождается непрерывным увеличением тока в рабочей обмотке трансформатора ТПТ и снижением тока в рабочей обмотке трансформатора ТПН. Наконец, при токе генератора Iгб соответствующем точке Б характеристики, происходит запирание выпрямительного моста В1 напряжением, подаваемым в цепь управляющей обмотки амплистата из цепи трансформатора ТПТ через выпрямительный мост В2. На участке характеристики БА при незначительном увеличении тока генератора и, следовательно, тока в управляющей обмотке амплистата достигается требуемое снижение напряжения генератора. Рост тока генератора практически ограничивается, предупреждая его перегрузку.
Следовательно, селективный узел осуществляет избирательное питание управляющей обмотки амплистата от одного или обоих измерительных трансформаторов в зависимости от силы тока и напряжения генератора.
Характеристика генератора, получаемая с помощью только измерительных трансформаторов и селективного узла, получила название селективной. В области рабочих токов генератора напряжение изменяется по линейному закону, что не обеспечивает строгого постоянства мощности дизель-генератора. Внешняя характеристика генератора становится гиперболической благодаря применению регулирующей обмотки амплистата и индуктивного датчика в регуляторе дизеля.
Селективный узел формирует характеристики генератора и при работе дизеля на более низких позициях контроллера пк. Они будут проходить ниже характеристики генератора на номинальном режиме (см. рис. 227, б).

Источник



Как узнать мощность трансформатора?

Определение мощности силового трансформатора

Трансформаторы

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

Читайте также:  Индикаторы выходной мощности 6е1п

Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Трансформатор ТП114-163М

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Замер толщины набора магнитопровода трансформатора

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Замер ширины центрального лепестка Ш-образной пластины

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

Читайте также:  Ваз 21102 пропала мощность

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см 2 . Далее нам понадобиться следующая формула.

Площадь сечения магнитопровода

,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Мощность трансформатора

Подставим в формулу значение сечения S = 3,4 см 2 , которое мы получили ранее.

Расчёт мощности трансформатора

В результате расчётов получаем ориентировочное значение мощности трансформатора

7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Трансформатор -

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Толщина набора пластин PDPC24-35

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Источник

Силовые трансформаторы: определение, классификация и принцип работы

Наиболее распространенными электрическими устройствами в промышленности и в быту являются трансформаторы. Их назначение – передача мощности внутри несогласованной электрической цепи между ее различными схемами. Применяются в тех случаях, когда требуется понизить или повысить напряжение между источником энергии и потребителем. Также трансформаторы включены в схемы блоков питания, преобразующих переменный ток в постоянный. В основе работы трансформаторов лежит их способность передавать электроэнергию между контурами посредством магнитной индукции.

Силовые трансформаторы — электромагнитные устройства, предназначенные для преобразования напряжений переменного тока, сохраняя при этом его частоту, а также для преобразования самой системы электроснабжения.

Конструкция и устройство силовых трансформаторов

Основной частью каждого силового трансформатора является его сердечник с несколькими обмотками, изготовленный из ферромагнитного материала. Как правило, это тонкие листы специального трансформаторного железа, обладающего магнитомягкими свойствами. Листы укладываются таким образом, чтобы форма стержней под обмотками в сечении была приближенной к кругу. Для повышения КПД устройства и снижения потерь, целые листы перекрывают стыки между отдельно взятыми пластинами.

Трансформаторная обмотка выполняется, как правило, из медного провода с прямоугольным или круглым сечением. Каждый виток изолирован от самого магнитопровода, а также от соседних витков. Для циркуляции охладителя, между обмотками и отдельными ее слоями предусматриваются технические пустоты.

Каждый трансформатор имеет как минимум две обмотки: первичную (на нее подается электрический ток) и вторичную (ток снимается после преобразования его напряжения).

Принцип работы

Принцип работы любого силового трансформатора заключается в явлении электромагнитной индукции. На первичную обмотку подается переменный ток, который образует в магнитопроводе переменный магнитный поток. Это происходит за счет его замыкания на магнитопроводе и образования сцепления между обмотками, индуцируя ЭДС. Нагрузка, подключенная ко вторичной обмотке, приводит к образованию в ней напряжения и тока.

Конструктивно, для получения любого напряжения на вторичной обмотке, используется необходимое соотношение витков между обмотками. Силовой трансформатор обладает свойством обратимости. Иными словами, он может быть использован и для повышения, и для понижения напряжения. В большинстве случаев силовой трансформатор применятся для решения определенных задач. Например, конкретно повышать или понижать напряжение. У повышающего трансформатора напряжение на первичной обмотке ниже, чем на вторичной.

Классификация силовых трансформаторов

В зависимости от класса напряжения и полной потребляемой мощности, силовые трансформаторы условно делятся на следующие категории:

Источник

Adblock
detector