Мощность подачи при резании

Силы резания при точении и мощность, затрачиваемая на резание

Срезая стружку, резец преодолевает сопротивление обрабатываемого металла резанию и силы трения стружки о переднюю поверхность инструмента и задней поверхности инструмента о заготовку.

Равнодействующая сила резания R – равнодействующая сил, действующих на резец, со стороны заготовки. Условно считают, что точка приложения R находится на рабочей части главного режущего лезвия. В процессе обработки величина, направление и точка приложения равнодействующей изменяются, поэтому для практических расчетов используют не равнодействующую, а ее составляющие P x, P y и P z, действующие по трем взаимно-перпендикулярным направлениям – осям X, Y и Z. Ось X – линия центров станка, т.е. она совпадает с осью вращения заготовки и параллельна направлению продольной подачи S .; ось Z лежит в плоскости резания, она параллельна направлению главного движения; ось Y перпендикулярна осям X и Z.

Рис.4.13. Силы, действующие на резец со стороны заготовки при резании.

Р z – вертикальная (касательная) составляющая силы резания. По силе P z определяют крутящий момент на шпинделе станка, мощность расходуемую на резание, производят динамический расчет коробки скоростей. Иногда P z называют главной составляющей силы резания или просто силой резания. Составляющая P z определяет изгибающий момент М х, действующий на стержень резца.

P y – радиальная составляющая силы резания. По силе P y определяют изгиб заготовки в плоскости XY.

P x – осевая составляющая силы резания (сила подачи). По силе P x рассчитывают механизмы подач станка и момент M x, изгибающий стержень резца в плоскости XY.

На практике определяют лишь составляющую P z (по эмпирическим формулам), а составляющие P y и P x берут в долях от P z.

Соотношение P z : P x : P y зависит от геометрии режущей части резца, режима резания, износа резца, физико-механических свойств обрабатываемого материала и условий обработки. Например, при точении острым проходным резцом ( γ = 15 о ; φ = 45 о ; λ = 0 о ) P y = (0,3-0,5) P z, P x = (0,15-0,3) P z.

При возрастании φ сила P y понижается, поэтому легко деформируемые длинные детали обрабатывают резцами с большими углами φ близкими к 90 о .

При возрастании продольной подачи S отношение P x/P z также возрастает.

Эффективная мощность N e – мощность, расходуемая на процесс деформирования и срезания с заготовки слоя материала.

При точении цилиндрической поверхности на токарно-винторезном станке эффективная мощность вычисляется по следующей формуле:

где V – скорость резания, м/мин; n – частота вращения заготовки, об/мин; S – продольная подача, мм/об; [ P z] и [ P x] = Н.

На практике вторым слагаемым в вышеприведённой формуле пренебрегают, так как , и эффективную мощность определяют по упрощенной формуле:

Мощность потребного электродвигателя станка определится как

где η – к.п.д. станка, учитывающий потери мощности в узлах трения станка (подшипниках, зубчатых передачах и т.п.) при её передаче от электродвигателя до шпинделя станка. Обычно η ≈ 0,7-0,8.

Крутящий момент резания – момент, необходимый для преодоления сопротивления вращению обрабатываемой заготовки.

Вычисляется по формуле:

где D заг – диаметр заготовки, мм.

Для того, чтобы процесс резания был возможен, крутящий момент на шпинделе М шп, развиваемый станком при определённом числе оборотов шпинделя, должен быть не меньше момента сопротивления М кр:

Источник

Сущность процесса резания материалов, сила резания. Мощность и скорость резания. Понятие обрабатываемости

Обработка материалов резанием – это процесс срезания режущим инструментом с поверхности заготовки слоя в виде стружки для получения необходимой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей детали

Резание металлов – сложный процесс взаимодействия режущего инструмента и заготовки, сопровождающийся определенными физическими явлениями. Упрощенно процесс резания можно представить в виде следующей схемы. В начальный момент процесса резания движущийся резец под действием силы Р вдавливается в металл, в срезаемом слое возникают упругие деформации. При дальнейшем движении резца упругие деформации, накапливаясь по абсолютной величине, переходят в пластические. В прирезцовом срезаемом слое материала заготовки возникает сложное упругонапряженное состояние. В плоскости, перпендикулярной траектории движения резца, возникают нормальные напряжения, а в плоскости, совпадающей с траекторией движения резца, — касательные напряжения. Наибольшие касательные напряжения действуют у вершины резца , уменьшаясь до нуля по мере удаления от нее. Нормальные напряжения вначале действуют как растягивающие, а затем быстро уменьшаются и, переходя через нулевое значение, превращаются в напряжения сжатия.

Под действием нормальных и касательных напряжений срезаемый слой пластически деформируется. Рост пластической деформации приводит к сдвиговым деформациям, т.е. к смещению частей кристаллов относительно друг друга. Это происходит, когда возникающие напряжения превосходят предел прочности обрабатываемого материала. Далее процесс повторяется и образуется следующий элемент стружки и т.д.

Срезанный и превращенный в стружку слой материала дополнительно деформируется вследствие трения стружки о переднюю поверхность инструмента.

Для хрупких материалов пластическая деформация практически отсутствует и угол близок к нулю, а при резании деталей из пластичных материалов значение угла доходит до 30 град. У передней поверхности резца слои стружки искривляются и располагаются почти параллельно ей.

Следовательно, резание может быть представлено как процесс последовательного упругого и пластического деформирования срезаемого слоя металла, а затем его разрушения.

При обработке резанием металл оказывает сопротивление режущему инструменту. Это сопротивление преодолевается силой резания, приложенной к передней поверхности инструмента. Сила резания направлена перпендикулярна передней поверхности резца. Сила резания затрачивается на отрыв элемента стружки от основной массы металла и его деформацию, а также на преодоление трения стружки о переднюю поверхность резца и задней поверхности резца о поверхность резания.

Силу резания R принято раскладывать на составляющие силы — тангенциальную Pz , радиальную Py и осевую Px.

При точении, растачивании, отрезании, прорезании пазов и фасонном точении тангенциальную составляющую, H, рассчитывают по формуле

Сp; xp; yp; np — эмпирические коэффициент и показатели степени, приведённые в табл;

t — глубина резания (при отрезании, прорезании и фасонном точении — длина лезвия резца), мм;

Kp = KMp·Kjp·Kgp·Klp·Krp — поправочный коэффициент, учитывающий фактические условия резания. Численные значения этих коэффициентов приведены в табл. 13 и 16.

Мощность резания. Работа резания, совершаемая в одну секунду, называется мощностью резания.

В технике мощность выражается в киловаттах

Мощность резания, кВт, рассчитывают по формуле

С учётом потерь, мощность привода, кВт, определится

где h — к.п.д. станка, (принимается равным 0,85).

Скорость резания V – это расстояние, пройденное точкой режущей кромки инструмента относительно заготовки в направлении главного движения в единицу времени. Скорость резания имеет размерность м/мин или м/сек.

При точении скорость резания равна:

где Dзаг – наибольший диаметр обрабатываемой поверхности заготовки, мм; n – частота вращения заготовки в минуту.

Под обрабатываемостью материалов в широком смысле этого слова понимают способность материалов подвергаться резанию по ряду технологических показателей. К ним относятся допускаемая скорость, возникающие в процессе резания силы, шероховатость обработанной поверхности, тип стружки и условия ее отвода из зоны резания и т.п. Таким образом, обрабатываемость является важнейшим технологическим свойством всех конструкционных материалов.

Поскольку производительность и себестоимость обработки зависят главным образом от допускаемой скорости резания, то для любого вида и характера обработки основным показателем обрабатываемости является скорость резания, величина которой определяется изнашивающим действием, оказываемым обрабатываемым материалом на контактные поверхности инструмента.

Существуют различные методы определения обрабатываемости. В основе «классического» метода лежит нахождение зависимости V =f(Т).Если сравнивают обрабатываемость двух материалов А и Б, то для них при одинаковых условиях обработки экспериментально находят связь между периодом стойкости и скоростью резания. При немонотонной зависимостиV =f(Т) находят отношение скоростей резанияVAиVБ, допускаемых материалами А и Б при определенном значении периода стойкости инструмента, являющееся коэффициентом обрабатываемости при выбранном периоде стойкости. Если зависимостьV =f(Т) монотонна и ее можно аппроксимировать степенной функцией, то находят две зависимости

V = CA / T m А и V = CБ/ Tm Б.

Задавшись периодом стойкости Т= 60 мин, определяют соответствующие ему скорости резанияV60AиV60Б .Коэффициент обрабатываемости

Классический метод является наиболее точным и объективно отражающим влияние обрабатываемого материала на изнашивание инструмента. Но он очень трудоемок и связан с большим расходом обрабатываемого материала и инструмента. Поэтому разработан ряд ускоренных методов, на которых, однако, мы останавливаться не будем, так как они подробно рассматриваются в учебной литературе.

Источник

Силы при обработке материалов резанием. Мощность затрачиваемая на процесс резания

Представляя процесс резания как процесс упругопластического сжатия и принимая во внимание силы трения, действующие на поверхностях режущего инструмента, общую работу, затрачиваемую на процесс резания, (А), можно выразить как:

где А пл – работа, затрачиваемая на пластическую деформацию срезаемого слоя при превращении его в стружку; А уп — работа, затрачиваемая на упругие деформации; А тр – работа трения; А д – работа диспергирования, т.е. работа затрачиваема на получение новых поверхностей.

Рис.40 Силы, действующие на передней и задней

поверхности резца при свободном резании

Учитывая малое значение составляющих работы А уп, А д окончательно имеем:

где А тр. п. п — работа, затрачиваемая на трение по передней поверхности, А тр. з. п – работа, затрачиваемая на трение по задней поверхности.

При резании считается, что вся механическая работа полностью переходит в тепловую энергию.

Рассмотрим силы, действующие на переднюю и заднюю поверхность при свободном резании (рис.40).

, – силы трения на передней и задней поверхности.

, – нормальная составляющая силы резания на передней и задней поверхности.

Для определения сил на контактных площадках инструмента, можно воспользоваться теоретическими формулами, но они в ряде случаев не обеспечивают точных результатов. Силы при обработке материалов резанием определяют экспериментально при помощи динамометров, с помощью которых равнодействующую силу резания R раскладывают по трем координатным осям (z, x, y,).

где P z – главная составляющая силы резания, определяющая мощность и крутящий момент при резании. Данная сила необходима для расчета привода главного движения;

P y – радиальная составляющая силы резания, отжимающая резец от заготовки, оказывает влияние на точность и шероховатость обработанной поверхности;

P x – осевая составляющая силы резания; необходима для расчета привода подачи станка.

При j=45°, g=15°, l =0° между составляющими силы резания имеется соотношение: P z =1, P y = (0,4-0,5)P z, P x=(0,3-0,4)P z. Отсюда сила R будет равна: .

Из полученного выражения следует, что сила Р z является главной составляющей силы резания и мало отличается по величине от равнодействующей силы R.

Рис.41 Сила резания при точении и её составляющая

Для расчета составляющих сил резания используют следующие эмпирические зависимости, полученные на основании экспериментальных исследований:

где C p – постоянный коэффициент, зависящий от свойств инструментального и обрабатываемого материалов и условий обработки;

x p , y p, z p – показатели степени влияния соответственно глубины, подачи и скорости на силу резания;

k р – общий поправочный коэффициент на измененные условия резания.

Мощность затрачиваемая на процесс резания (эффективная мощность), рассчитывается как сумма мощностей на преодоление каждой составляющей силы резания Р z, P y и Р х. Учитывая, что мощность есть работа в единицу времени, необходимо каждую составляющую умножить на скорость резания в направлении действия данной силы, т.е.

Учитывая, что скорость в направлении радиальной составляющей Р Y равна нулю, мощность резания на преодоление данной силы также будет равна нулю. Мощность на преодоление осевой составляющей существенно меньше по сравнению с мощностью на преодоление главной составляющей,

Поэтому окончательно имеем:

где Pz измеряется в (Н), а V – м/мин

Мощность на валу электродвигателя определяется как:

где h — КПД электродвигателя станка, N c т – мощность электродвигателя станка.

Для осуществления процесса резания необходимо чтобы N э £N c т

Если данное условие не выполняется, то необходимо:

1. Выбрать более мощный станок. 2. Уменьшить частоту вращения, перейдя на ближайшее меньшее её значение по паспорту станка. 3. «Разбить» глубину резания на несколько проходов (2 или более).

Влияние различных факторов на силы резания

Рассматривая влияние различных факторов на силы резания необходимо отметить, что рост сил резания вызывают факторы, повышающие сопротивляемость обрабатываемого материала процессу резания. К ним относятся механические свойства обрабатываемого материала, а также факторы, увеличивающие площадь и объем срезаемого слоя. Остальные факторы влияют на силы резания таким же образом, как они влияют на коэффициент укорочения стружки.

Рассмотрим влияние различных фактор на силы резания (на примере главной составляющей P z ) при токарной обработке.

С увеличением твердости или прочности HB (σB) обрабатываемого материала возрастает его сопротивляемость процессу снятия стружки, что ведет к росту силы резания P z (рис.42,а).

Увеличение подачи или глубины резания S (t) приводит к росту площади срезаемого слоя и следовательно объема срезаемого материала, что повышает силу Pz (рис.42,б). Большее влияние на силу резания оказывает глубина резания по сравнению с подачей. Это объясняется тем, что при увеличении глубины резания, например, в 2 раза площадь срезаемого слоя тоже увеличивается в 2 раза (F=2*S*t), но степень деформации при этом не меняется (см. рис.32,б). Следовательно сила Pz растет пропорционально глубине, а значит увеличивается в 2 раза. При увеличении подачи в 2 раза площадь срезаемого слоя также увеличивается в 2 раза, но степень пластической деформации уменьшается (см. рис.32,а). Следовательно рост силы будет отставать от роста подачи и она не увеличится в 2 раза.

Влияние всех остальных факторов на силу резания объясняется их влиянием на коэффициент укорочения стружки. При этом факторы, повышающие степень пластической деформации (увеличивающие коэффициент укорочения стружки), действуют в сторону увеличения сил резания и наоборот.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector