Мощность нагревателя через напряжение

Расчет мощности ТЭНов

Оптимальным источником энергии, для нагрева испарительной емкости, является квартирная электрическая сеть, напряжением 220 В. Можно просто использовать для этих целей бытовую электроплиту. Но, при нагреве на электроплите, много энергии расходуется на бесполезный нагрев самой плиты, а также излучается во внешнюю среду, от нагревательного элемента, не совершая при этом, полезной работы. Эта, понапрасну затрачиваемая энергия, может достигать приличных значений — до 30-50 %, от общей затраченной мощности на нагрев куба. Поэтому использование обычных электроплит, является нерациональным с точки зрения экономии. Ведь за каждый лишний киловатт энергии, приходится платить. Наиболее эффективно использовать врезанные в испарительную емкость эл. ТЭНы. При таком исполнении, вся энергия расходуется только на нагрев куба + излучение от его стенок вовне. Стенки куба, для уменьшения тепловых потерь, необходимо теплоизолировать. Ведь затраты на излучение тепла, от стенок самого куба могут так же, составлять до 20 и более процентов, от всей затрачиваемой мощности, в зависимости от его размеров. Для использования в качестве нагревательных элементов врезанных в емкость, вполне подходят ТЭНы, от бытовых эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, бывает разная. Наиболее часто применяются ТЭНы с выбитой на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие.

Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева куба и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Такого диапазона вполне хватит для регулировки и поддержания нужной температуры при перегонке и ректификации. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Рассчитать можно по следующей формуле.

Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I — сила тока в амперах.

P — мощность в ваттах.

U — напряжение в вольтах.

При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт. Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

Далее зная силу тока подсчитываем сопротивление ТЭНа, по следующей формуле.

R = U / I, где

R — сопротивление в Омах

U — напряжение в вольтах

I — сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

Далее подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3 и т.д.

Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

P = U 2 / R где,

P — мощность в ваттах

U 2 — напряжение в квадрате, в вольтах

R — общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

Таблица 1.1. Значения для последовательного соединения ТЭНов при напряжении 220В.

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Сила тока (А)
1 1250 38,8 5,7
2 625 77,5 2,8
3 416 116,2 1,9
4 312 154,9 1,4
5 250 193,6 1,1
6 208 232,4 0,9
7 178 271 0,8
8 156 309,8 0,7

Таблица 1.2. Значения для параллельного соединения ТЭНов при напряжении 220В.

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Сила тока (А)
2 2500 19,4 11,4
3 3750 12,9 17
4 5000 9,7 22,7
5 6250 7,7 28,4
6 7500 6,5 34
7 8750 5,5 39,8
8 10000 4,8 45,5

Еще один немаловажный плюс, который дает последовательное соединение ТЭНов, это уменьшенный в несколько раз протекающий через них ток, и соответственно малый нагрев корпуса нагревательного элемента, тем самым не допускается пригорание браги во время перегонки и не привносит неприятного дополнительного вкуса и запаха в конечный продукт. Так же ресурс работы ТЭНов, при таком включении, будет практически вечным.

Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами.

19 авг. 07 19 марта 21, 19:48

Рейтинг Поделиться ссылкой

Вы можете изменять любую статью на сайте, более того, ваше участие всячески приветствуется! Делитесь своими знания и опытом.

Источник

Расчет мощности и габаритов электрического нагревателя

Расчет электрических и геометрических параметров электронагревателя определяется, принимая во внимание множество нюансов. Для корректного расчета мощности электронагревателя необходимо знать теплофизические свойства нагреваемой среды, такие как плотность и теплоемкость, вязкость и теплопроводность. Однако, для общего понимания процесса расчета нагревательного оборудования, в данной статье мы приведем несколько формул и объясним основные принципы расчета нагревателей.

РАСЧЕТ ТРЕБУЕМОЙ МОЩНОСТИ

В зависимости от типа нагрева (статический или динамический), формулы расчета мощности несколько отличаются.

Расчет мощности нагревателя для нагрева жидкости в резервуаре достаточно точно может быть произведен по следующей формуле:

P= ((V* ρ * Сp* (Т2-T1)/(3600* t)) +К, где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем в литрах;

ρ – плотность жидкости, кг/м3;

Сp – удельная теплоемкость жидкости, кДж/ кг °С;

Т1 – начальная температура жидкости, °С

Т2 — требуемая температура жидкости, °С

t – требуемое время нагрева, ч;

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции резервуара. Значения коэффициента принимаются в диапазоне 5….25%.

По данной формуле можно достаточно точно рассчитать требуемую мощность для нагрева жидкости в резервуаре. Если же необходимо рассчитать мощность прочного подогревателя жидкости или газа , то данная формула примет следующий вид:

P= ((V* ρ * Сp* (Т2-T1)/(3600) +К, где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем нм3/ час;

ρ – плотность нагреваемой среды, кг/м3;

Сp – удельная теплоемкость нагреваемой среды, кДж/ кг °С;

Т1 – температура на входе в подогреватель, °С

Т2 — требуемая температура на выходе из подогревателя, °С

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции сосуда. Значения коэффициента принимаются в диапазоне 5….25%.

В качестве примера произведем расчет мощности проточного подогревателя для нагрева воздуха с расходом 3000 нм3/час от +5ºС до +40ºС при рабочем давлении 1 атм., тогда:

P = 3000 x 1,24 x 1,05 x (40-5)/ 3600 = 37, 98 кВт

Данной мощности 38 кВт будет достаточно только при идеальных условиях. Под идеальными условиями подразумевается отсутствие теплопотерь, падения напряжений, а также абсолютная точность при изготовлении никель-хромовой спирали нагревательных элементов. К сожалению, на практике идеальных условий не бывает, поэтому в случае стабильного напряжения и расположения подогревателя в отапливаемом помещении, будет достаточно принять запас 10% — тогда требуемая мощность подогревателя составит 42 кВт. Если же напряжение питания нестабильно и оборудование располагается на улице при температуре до -50ºС, то рекомендуется принять запас по мощности не менее 25% — тогда мощность подогревателя должна быть порядка 48 кВт. Если пренебречь запасом мощности и принять только мощность, необходимую на процесс нагрева, то есть вероятность, что подогреватель не сможет выйти на рабочий режим и осуществить подогрев воздуха до +40ºС.

РАСЧЕТ ГАБАРИТОВ ОБОРУДОВАНИЯ

Габариты нагревателя определяются исходя из количества нагревательных элементов и погружной длины. Данные параметры зависят от расхода, требуемой температуры нагреваемой среды и от мощности нагервателя. Количество ТЭН и погружная длина подбирается исходя из допустимой удельной мощности. Чем выше температура нагреваемой среды, тем ниже должна быть удельная мощность нагревательных элементов, во избежание перегрева и выхода оборудования из строя. Также, при расчете габаритов нагревателя нужно учитывать, что в случае нагрева до температур выше +100ºС между монтажным фланцем обязательно нужно предусматривать холодную хону от 100 до 400 мм, во избежание перегрева клеммной коробки. Величина холодной зоны определяется температурой нагреваемой среды.

УДЕЛЬНАЯ МОЩНОСТЬ ТЭН

Определяющим параметром, влияющим на габариты изделия является удельная мощность нагревательных элементов, которая измеряется в Вт/см2 т.е. сколько Вт энергии выделяется с 1 см2 поверхности нагревательных элементов. От данного параметра зависят окончательные размеры оборудования — чем удельная мощность выше, тем габаритные размеры подогревателя будут меньше. Но нужно понимать, что нельзя бесконечно увеличивать удельную мощность чтобы сделать нагреватель меньше, тем самым уменьшив его стоимость. Слишком высокая удельная мощность ведет к увеличенной температуре на поверхности нагревательных элементов и сокращению срока службы изделия. Удельная мощность также зависит от диаметра нагревательных элементов. Так при одинаковой мощности и длине, у нагревательного элемента ø16 мм удельная мощность будет меньше, чем у нагревательного элемента ø10 мм.

Удельная мощность нагревательного элемента рассчитывается по следующей формуле:

W = P/n х 3.14 х Ø х L, где

W — удельная мощность (Вт/см2);

P — мощность нагревательного элемента, Вт;

n — количество нагревательных элементов в подогревателе, шт.;

Ø — диаметр нагревательного элемента, см;

L — развернутая рабочая длина нагревательного элемента, см;

В качестве примера, возьмём вышеописанный подогреватель воздуха, мощностью 42 кВт. Предположим, что он состоит из 12 U-образных нагревательных элементов диаметром 10 мм с погружной длинной 2000 мм, из которых 200 мм холодной (ненагреваемой) длины. Рассчитаем удельную мощность нагревательных элементов:

W = 42000/ 12 x 3,14 x 1 х 360 = 3, 09 Вт/ см2

В случае невысоких температур нагрева, можно принять удельную мощность нагревательных элементов по следующей таблице:

нагрев воздуха до температуры +100 и более градусов, нагрев мазута и битума, дизельного топлива, нефти, нагрев термального масла до +300 С

подогрев антифриза с концентрацией более 50%, подогрев термального масла, подогрев воздуха до +80. 90 С, подогрев природного газа

подогрев щелочных растворов, подогрев антифриза с концентрацией до 50%

подогрев воды, проточный подогрев антифриза с концентрацией до 30%

нагрев воды в проточном режиме в больших объемах, электрические парогенераторы.

Указанные в таблице значения являются ориентировочными, более точным является подбор удельной мощности по температуре нагревательных элементов.

ТЕМПЕРАТУРА НА ПОВЕРХНОСТИ НАГРЕВАТЕЛЬНЫХ ЭЛЕМЕНТОВ

Температура на поверхности нагревательных элементов зависит от удельной мощности и расхода нагреваемой среды, но также на нее влияют теплофизические свойства нагреваемой среды и температура на выходе из подогревателя. Если использовать один и тот же проточный нагреватель для нагрева воды и воздуха, то в первом случае температура нагревательных элементов будет меньше т.к. жидкости обладают большей теплоемкостью и лучше снимают тепло с нагревательных элементов. Точный расчет температуры нагревательных элементов производится с помощью специального софта, который учитывает все геометрические параметры нагревателя, количество нагревательных элементов, удельную мощность, тип нагреваемой среды, требуемую температуру и давление. Вручную рассчитать температуру нагревательных элементов без знания углубленного курса теплофизики практически невозможно. Существуют методики определения температуры ТЭН для статического нагрева жидкости, температура ТЭН в данном случае имеет некую зависимость от удельной мощности и температуры нагреваемой среды, но данные методики не являются точными и имеют определенную погрешность. Определив необходимую удельную мощность и рассчитав температуру нагревательных элементов, мы можем понять какие габариты будут у нашего изделия и рассчитать его стоимость.

Если Вы не имеете опыта расчетов подобного оборудования — настоятельно рекомендуем Вам обратиться в наш технический отдел т.к. при неправильном выборе параметров для общепромышленного оборудования Вы рискуете стабильностью его работы и процесса нагрева. Если же речь идет о расчетах взрывозащищенного оборудования, то данные расчеты могут быть выполнены только специалистами т.к. помимо нестабильной работы, при неправильном определении параметров нагревателя есть риск спровоцировать взрывоопасную ситуацию на объекте. Специалисты компании ООО «СИСТЕМЫ ПОДОГРЕВА» имеют специализированное ПО и огромный опыт в данной области. Расчет и подбор оборудования может быть осуществлены в течение 1- 2 рабочих дней.

Источник

Расчет параметров нагревателей из нихрома и фехрали

Расчет длины проволоки для спирали

Требуемая мощность нагревателя
Вт

Напряжение питания
В

Выберете материал
Нихром Константан Хромаль Фехраль

Выберете диаметр проволоки из стандартных промышленных размеров.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5 2.0 2.2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 10.0 мм

Сечение проволоки мм 2

Сопротивление проволоки Ом

Длина проволоки м

Ток, потребляемый нагревателем А

Полученные результаты не учитывают рост электрического сопротивления проводника с ростом его температуры. Поэтому фактическая мощность (как и потребляемый ток от сети) всегда несколько ниже расчетных величин.

Расчет веса и длины

Пересчитать Длину в вес Вес в длину Вид продукции Проволока Лента Сплав Фехрали (Х23Ю5Т, GS SY, Х15Ю5) Нихромы (Х15Н60 Х20Н80, GS 40) Диаметр, мм. Толщина, мм. Ширина, мм. Длина, м. Вес, кг. Масса, кг. 11.3040 Рассчитать

Нихром и фехраль являются самыми распространенными материалами для создания резистивного нагревателя. Нихром (в частности, нихром 80) изготавливается из смеси никеля и хрома. Фехраль или другое название Кантал представляет собой сплав железо-хром-алюминий (FeCrAl).

Краткий анализ

Fechral – сплавы группы железо-хром-алюминий (FeCrAl), используемые в широком диапазоне сопротивлений и при высоких температурах. Сплавы известны своей способностью выдерживать высокие температуры (до 1400 ° C (2550 ° F)), и имеющие промежуточное электрическое сопротивление (1,20 — 1,30 Ом · м).

Типичные области применения сплавов FeCrAl — это электрические нагревательные элементы в высокотемпературных печах для термообработки, керамической, стекольной, сталелитейной и электронной промышленности.

Среди достоинств фехрали можно отметить следующие:

высокая рабочая температура;
Ферритные сплавы FeCrAl можно использовать в среднем до 1400 °C, в то время как аустенитные сплавы NiCr имеют максимальную рабочую температуру до 1250 °C.

высокое удельное сопротивление;
Удельное сопротивление сплавов FeCrAl выше, чем сплавов NiCr. Это дает возможность выбирать материалы с большим поперечным сечением, тем самым продлевая срок службы элементов. Значительная экономия веса может быть получена, особенно при использовании тонкой проволоки — чем выше удельное сопротивление, тем меньше материалов используется. Кроме того, на удельное сопротивление сплавов FeCrAl меньше влияет холодная обработка и термообработка по сравнению со сплавами NiCr.

более долгая жизнеспособность;
Сплавы FeCrAl могут использоваться от 2 до 4 раз дольше, чем сплавы NiCr, эксплуатируемые при той же температуре в атмосфере.

более высокая поверхностная нагрузка;
Более высокая рабочая температура и более длительный срок службы сплавов FeCrAl гарантируют способность выдерживать высокие поверхностные нагрузки.

небольшой вес и невысокая стоимость;
Вес сплавов FeCrAl ниже, чем сплавов NiCr. Благодаря тому, что сплавы FeCrAl не содержат никель, его цена ниже, чем на сплавы NiCr. В результате в большом количестве применений может быть достигнута значительная экономия веса и стоимости элементов.

отличные окислительные свойства;
Оксид алюминия (Al2O3), образующийся на поверхности сплавов FeCrAl, имеет лучшие адгезионные свойства и, следовательно, менее загрязняется.

стойкость к сере;
Сплавы FeCrAl могут противостоять коррозии в атмосфере и материалах, загрязненных серой или ее соединениями. В таких условиях сплавы NiCr подвержены сильной эрозии.

Нихром (NiCr) — группа сплавов с содержанием Ni 55-78%, Cr 15-23% в зависимости от марки и добавками Mn, Si, Fe и Al. Сплавы известны своей способностью выдерживать высокие температуры (до 1250 ° C (2280 ° F), и имеют промежуточное электрическое сопротивление (1,05–1,40 Ом * м). Сплавы NiCr обладают отличнойустойчивостью к высокотемпературному окислению, коррозии и имеют хорошую износостойкость.

Благодаря своей стойкости к окислению и стабильности при высоких температурах нихром широко используется в электронагревательных установках, таких как электрические печи, печи для обжига и сушки, его используют в производстве различных нагревательных устройств.

Среди достоинств нихрома можно отметить следующие:

идеальная стабильность формы при высоких температурах;
Сплавы NiCr устойчивы к деформации и сохраняют очень хорошую стабильность формы при высоких температурах благодаря тому факту, что они имеют более высокий предел прочности при нагревании и ползучести, чем сплавы FeCrAl.

немагнитные свойства;
Сплав NiCr — немагнитный материал, который можно использовать при низких температурах. Между тем сплав FeCrAl немагнитен при температурах выше 600 °C.

хорошая пластичность после длительного использования;
Сплавы NiCr остаются пластичными после длительного использования. Это свойство делает нагревательные элементы более прочными.

высокая излучательная способность;
Сплавы NiCr имеют более высокий коэффициент излучения, чем сплавы FeCrAl в полностью окисленном состоянии. При одинаковой поверхностной нагрузке температура элементов сплава NiCr ниже, чем сплавов FeCrAl.

устойчивость к коррозии;
Как правило, сплавы NiCr имеют лучшую коррозионную стойкость при комнатной температуре, чем неокисленные сплавы FeCrAl (за исключением серной среды и контролируемой атмосферы).

Расчеты нагревательных элементов. Калькуляторы вычисления длины спирали и пересчета веса материалов в длину и наоборот

Расчёт сопротивления

В первую очередь стоит определить длину проволоки. За основу для расчета берется мощность и сопротивление. К примеру, нужно изготовить нагревательный элемент для устройства, мощность которого составлять должна 10Вт, а напряжение 12Вольт. Для примера вычислений возьмем нихромовую проволоку, диаметр сечения которой составляет 0,1 мм.

Без учетов нагрева можно применить элементарную формулу расчета:

Р=U∙І → І = Р/ U = 10 / 12 = 0,83 А

R= U/ І = 12 / 0,83 = 14,5 Ом.

На основе имеющихся данных площади сечения проволоки (S) и удельного сопротивления нихромового сплава (ρ) длина проволоки вычисляется довольно просто:

Для определения удельного сопротивления проволоки из нихрома с конкретным диаметром можно использовать формулы или готовую таблицу. Нихром, диаметр которого составляет 0,1 мм будет обладать сопротивлением 14,4 Ом и иметь площадь сечения 0,008 мм.кв — внеся эти данные в таблицу мы определим, что длина такой проволоки должна составлять 10 см.

Для расчета того, сколько витков спирали нужно сделать из проволоки полученной длины, нужно воспользоваться такими формулами:

Вычисление длины одного витка, равного:

Длина витка =π∙( диаметр намотки + 0,5 ∙ диаметр сечения проволоки)

Количество витков = длина проволоки / длина витка

Исходя из этого, проводим следующее соотношение, если диаметр витков проволоки будет 2 мм, то

Количество витков = 100/( 3,14*(2+0,05))=15,5 витков

В теории все складно и хорошо. Но, что покажет практика? Сможет ли нихромовая проволока такого диаметра выдерживать подобную нагрузку. Расчеты в таблицах представленных ниже предоставляют данные максимального тока, который допустим для конкретных показателей диаметра нихромовой нити при определенной температурной нагрузке.

Другими словами, следует высчитать температурный показатель, выше которого не должна прогреваться спираль и подобрать в значениях таблицы подходящее сечение для расчетного тока.

Следует отметить, что для электронагревателей, предназначенных для работы в жидкой среде сила тока должна браться с большим расчетом на 1,5 раза. Для устройств предназначенных для работы в замкнутом пространстве следует ток уменьшить.

Температурный расчет

Данный расчет является более сложным и более точным, чем предыдущий. В нем учитывается величина сопротивления материала в холодном состоянии. Ведь логически должно быть понятно, что при изменении температуры меняться должно и сопротивление. Также важно учитывать еще и в каких условиях работает нагревательный прибор. При небольших температурах, например в случае использования обычных обогревателей, первую методику расчета можно легко использовать, для печей высокого сопротивления, где температурная подача сверхвысокая, такой метод уже будет не актуален.

Чтобы показать пример расчета спирали на основе второго метода возьмем греющий элемент, предназначенный для работы в муфельной печи. В первую очередь определяем объем рабочей камеры и исходя из этого высчитываем мощность необходимую при нагреве. Для муфельной печи подбор происходит на основе следующего правила:

Для печных установок, камера которых имеет объем менее 50 л., расчет проводим исходя из 1 литр на 100 Вт

Для оборудования с рабочей камерой более 100 л., но меньше 500 л. Мощность рассчитывается 50-70 Вт на 1 литр

В качестве примера берем печную установку объемом 50 л. Мощность такой печки составляет 50*100= 5000 Вт

Определим силу тока (І) и сопротивление (R) для сети 220В

І = 5000/220 = 22,7 А

R = 220/22,7 = 9,7 Ом

При подключении спирального нагревателя способом «звезда», мощность делим на три фазы.

Мощность на фазу = 5кВт / 3 = 1,66 кВт

Такой тип подключения в трехфазную сеть предполагает подачу к каждой фазе 220В, то есть ток и сопротивление будут соответствовать следующему расчету:

І = 1660/220 = 7,54 А

R = 220/7,54 = 29,1 Ом

При соединении нагревательного элемента в условиях напряжения 380 В использоваться будет схема подключения «треугольник». Расчет будет проведен по формуле учитывающей линейное напряжение 380В.

І = 1660/380 = 4,36 А

R = 380/4,36 = 87,1 Ом

Диаметр определяется при учете удельной поверхностной мощности нагревательного элемента. Рассчитаем длину нагревательной спирали, беря за основу удельные сопротивления из таблиц.

Поверхностная мощность = βэф*α(коэффициент эффективности)

Из проведенной работы можно свободно сделать вывод, что для муфельной печки, которая должна прогреваться до 1000 градусов Цельсия необходимо взять спираль, рассчитанную на подачу температуры в 1100 градусов Цельсия. На основе табличных данных выбираем соответствующие показатели и получаем:

Поверхностная мощность (Вдоп)=4,3∙0,2=0,86Вт/см2=8600 Вт/м2

Удельное сопротивление проволоки при необходимой термической нагрузке (Rt) подбирается из таблицы

При использовании нихромового сплава маркой Х80Н20, Rt составляет 1,025. Исходя из этого, Рт=1,13*106*1,025=1,15*106 Ом на мм

Для подключения греющего элемента по типу звезда: диаметр составляет 1,23 мм, длина = 42 м

Проверяем значения по формуле L=R/(p*k)

Получаем в итоге 29,1/(0,82*1,033)= 34 м

Как видно, при использовании формулы, где температура не учитывается, конечные данные имеют значительные отличия от полученных показателей. Правильно выберите длину одной спирали для соединения звезды равной 42 м, тогда для 3-х спиралей понадобится 126 метров нихромовой проволоки диаметром 1,3.

Выводы

При помощи калькуляторов и формул удастся быстро произвести расчет длины греющей проволоки. Определить диаметр на основе необходимой мощности и температурной выработки греющей спираль также не затруднительно. Но, даже при помощи второго более сложного способа расчета невозможно учесть различные факторы, которые могут возникнуть при непосредственной эксплуатации нагревателя и внести свои коррективы в его работу. Практика показывает обратное. После проведения полных расчетов все же придется подгонять полученные результаты под конкретные условия работы нагревателя.

Провести полный и высокоточный расчет всех параметров нихромовой и фехралевой спирали вам помогут специалисты «Технонагрев». Наши технологи обладают большим опытом и навыками при проектировке и изготовлении нагревателей любой сложности. То, что для вас может показаться нерешаемой задачей для нас окажется работой на несколько минут.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector