Меню

Мощность импульса через энергию

Законы сохранения в механике

Импульс тела

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​ \( p \) ​, единицы измерения – (кг·м)/с.

Импульс тела – это количественная мера движения тела.
Направление импульса тела всегда совпадает с направлением скорости его движения.
Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​ \( p_0 \) ​ – начальный импульс тела,
​ \( p \) ​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​ \( F\!\Delta t \) ​, единицы измерения — Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой.

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.
​ \( F_1,F_2,F_3 \) ​ – внешние силы, действующие на тела;
​ \( F_<12>, F_<23>, F_<31>, F_<13>, F_<21>, F_ <32>\) ​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​ \( \Delta t \) ​.
Обозначим: ​ \( v_0 \) ​ – начальные скорости тел, а ​ \( v^ <\prime>\) ​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.
Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.
Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели
Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.
Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.
Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.
Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​ \( A \) ​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​ \( \alpha \) ​

Читайте также:  Генератор для кемпинга мощность


\( \alpha=180^<\circ>,\, \cos\alpha=-1,\, A=-FS,\,A ​

Геометрический смысл механической работы

На графике зависимости ​ \( F=F(S) \) ​ работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Формулы для вычисления работы различных сил

Работа силы тяжести:

Работа силы упругости:

Коэффициент полезного действия механизма (КПД) — это физическая величина, равная отношению полезной работы, совершенной механизмом, ко всей затраченной при этом работе.
Обозначение – ​ \( \eta \) ​, единицы измерения – %.

​ \( A_<\mathit<пол.>> \) ​ – полезная работа – это та работа, которую нужно сделать;
​ \( A_<\mathit<зат.>> \) – затраченная работа – это та работа, что приходится делать на самом деле.

Важно!
КПД любого механизма не может быть больше 100%.

Мощность

Мощность – это количественная мера быстроты совершения работы.

Обозначение – ​ \( N \) ​, единицы измерения – Вт (Ватт).
Мощность равна отношению работы к времени, за которое она была совершена: .

1 Вт – это мощность, при которой за 1 с совершается работа в 1 Дж:

1 л. с. (лошадиная сила) = 735 Вт.

Связь между мощностью и скоростью равномерного движения:

Таким образом, мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов.

Важно!
Если интервал времени стремится к нулю, то выражение представляет собой мгновенную мощность, определяемую через мгновенную скорость.

Работа как мера изменения энергии

Если система тел может совершать работу, то она обладает энергией.

Работа и изменение кинетической энергии (теорема о кинетической энергии)

Если под действием силы тело совершило перемещение и вследствие этого его скорость изменилась, то работа силы равна изменению кинетической энергии.
Силы, работа которых не зависит от формы траектории, называются консервативными.

Работа и изменение потенциальной энергии тела, поднятого над землей

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

Работа и изменение потенциальной энергии упруго деформированного тела

Работа силы упругости равна изменению потенциальной энергии, взятому с противоположным знаком.

Кинетическая энергия

Кинетическая энергия – это энергия, которой обладает тело вследствие своего движения.

Обозначение – ​ \( W_k (E_k) \) ​, единицы измерения – Дж.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Важно!
Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от выбора системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел или частей одного и того же тела.

Обозначение – ​ \( W_p (E_p) \) ​, единицы измерения – Дж.

Потенциальная энергия тела, поднятого на некоторую высоту над землей, равна произведению массы тела, ускорения свободного падения и высоты, на которой он находится:

Потенциальная энергия упруго деформированного тела равна половине произведения жесткости на квадрат удлинения:

Важно!
Величина потенциальной энергии зависит от выбора нулевого уровня. Нулевым называется уровень, на котором потенциальная энергия равна нулю. Нулевой уровень выбирается произвольно, исходя из удобства решения задачи.

Закон сохранения механической энергии

Полная механическая энергия – это энергия, равная сумме кинетической и потенциальной энергий.

Обозначение – ​ \( W (E) \) ​, единицы измерения – Дж.

Закон сохранения механической энергии
В замкнутой системе тел, между которыми действуют только консервативные силы, механическая энергия сохраняется, т. е. не изменяется с течением времени:

Если между телами системы действуют кроме сил тяготения и упругости другие силы, например сила трения или сопротивления, действие которых приводит к превращению механической энергии в тепловую, то в такой системе тел закон сохранения механической энергии не выполняется.

Важно!
В случае, если кроме консервативных сил (тяжести, упругости, тяготения) существуют еще и неконсервативные силы, например сила трения, а также внешние силы, то

Теорема о кинетической энергии справедлива для сил любой природы:

Если на систему тел действуют неконсервативные и внешние силы, то изменение полной энергии равно сумме работ неконсервативных и внешних сил.

Закон сохранения и превращения энергии
Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому.

Источник



Импульс тела. Энергия. Законы сохранения. Мощность

Блок 4. Импульс тела. Энергия. Законы сохранения. Мощность.

Импульс тела (количество движения). Закон сохранения импульса.

1. Чем больше время действия силы, тем больше изменение скорости тела.

2. Произведение силы на длительность её действия называется импульсом силы I = F Δt

3. Импульс тела – векторная физическая величина равная произведению массы тела на его скорость и имеющая направление скорости. P = mv.

4. Изменение импульса тела равно импульсу силы t = mv – mv0. P = mv. F = ΔP/Δt более общая формулировка второго закона Ньютона.

5. Обычно при решении задач рассматривается замкнутая система тел – это такая система, для которой равнодействующая внешних сил равна нулю. Учитываются только внутренние силы, то есть силы взаимодействия между телами внутри системы: это силы упругости при ударе, силы трения при движении, гравитационные силы при рассмотрении взаимодействия тел во Вселенной, кулоновские силы электрического взаимодействия, магнитные силы и т. д.

6. Закон сохранения импульса. Суммарный импульс замкнутой системы тел остаётся постоянным при любых взаимодействиях тел системы между собой. Векторная сумма импульсов тел замкнутой системы до взаимодействия равна векторной сумме импульсов тел этой системы после взаимодействия. В В проекциях: m1 v01x + m2 v02x = m1 v1x + m2 v2x

7. Реактивное движение – это движение, возникающее при отделении от тела некоторой его части с какой-то скоростью. Выстрел, ракета, осьминог, надувной шарик и т. д.

8. От чего зависит действие силы? (Время, координата). Временная характеристика силы – импульс силы. Пространственная характеристика силы – работа.

Работа. Энергия. Законы сохранения и изменения энергии. Мощность.

9. Работа – физическая величина, равная произведению проекции силы на

координатную ось на перемещение по этой оси. A= Fx Sx

10. Как зависит работа от угла между перемещением и силой?

· α = 0, A = FS – максимальна.

· α = 90о, работа перпендикулярных сил равна нулю A = FS = 0.

· α =180о, работа сил сопротивления отрицательна A = – FS .

Читайте также:  Пылесос bosch bch3k210 мощность всасывания

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.

Альберт Эйнштейн

Тестирование

Урок 04. Лекция 03.Закон сохранения импульса и реактивное движение. Закон сохранения механической энергии. Работа и мощность.

Движение в природе не возникает из ничего и не исчезает – оно передаётся от одного объекта к другому. При определённых условиях, движение в состоянии накапливаться, но, высвобождаясь, обнаруживает своё свойство к сохранению.

Задумывались ли вы когда-нибудь почему:

  • Мяч, летящий с большой скоростью, футболист может остановить ногой или головой, а вагон, движущийся по рельсам даже очень медленно, человек не остановит (масса вагона намного больше массы мяча).
  • Стакан с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то стакан движется вместе с бумагой. а если резко дернуть полоску бумаги — стакан остается неподвижный. (стакан останется неподвижным из-за инерции — явления сохранения скорости тела постоянной при отсутствии действия на него других тел)
  • Теннисный мяч, попадая в человека, вреда не причиняет, однако пуля, которая меньше по массе, о движется с большой скоростью (600—800 м/с), оказывается смертельно опасной (скорость пули намного болше, чем мяча).

Значит, результат взаимодействия тел зависит и от массы тел и от их скорости одновременно.

Еще великий французский философ, математик, физик и физиолог, основатель новоевропейского рационализма и один из влиятельнейших метафизиков Нового времени Рене Декарт ввел такое понятие как «количество движения». Он же высказал закон сохранения количества движения, дал понятие импульса силы.

Рене Декарт

«Я принимаю, что во Вселенной. есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает.» Р. Декарт

Декарт, судя по его высказываниям, понимал фундаментальное значение введенного им в XVII веке понятия количества движения — или импульса тела — как произведения массы тела на величину его скорости. И хотя он совершил ошибку, не рассматривая количество движения как векторную величину, сформулированный им закон сохранения количества движения выдержал с честью проверку временем. В начале XVIII века ошибка была исправлена, и триумфальное шествие этого закона в науке и технике продолжается по сию пору.

Как один из основополагающих законов физики, он дал неоценимое орудие исследования ученым, ставя запрет одним процессам и открывая дорогу другим. Взрыв, реактивное движение, атомные и ядерные превращения — везде превосходно работает этот закон. А в скольких самых обиходных ситуациях помогает разобраться понятие импульса, сегодня, мы надеемся, вы убедитесь сами.

Количество движения — мера механического движения, равная для материальной точки произведению её массыm на скорость v.Количество движения mv — величина векторная, направленная так же, как скорость точки. Иногда Количество движения называют ещёимпульсом. Количество движения, в любой момент времени, характеризуется скоростью объекта определённой массы при перемещении его из одной точки пространства в другую.

Импульсом тела (или количеством движения) называют векторную величину, равную произведению массы тела на его скорость:


Импульс тела направлен в ту же сторону, что и скорость тела.

Единицей измерения импульса в СИ является 1 кг·м/с.

Изменение импульса тела происходит при взаимодействии тел, например, при ударах. (Видео «Бильярдные шары). При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу.

Виды соударений:

Абсолютно неупругий удар — это такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.


Пуля застревает в бруске и далее они движутся как одно целое Кусок пластелина прилипает к стене

Абсолютно упругий удар — это столкновение, при котором сохраняется механическая энергия системы тел.


Шарики после столкновения отскакивают друг от друга в разные стороны Мяч отскакивает от стены

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила F.

Под действием этой силы скорость тела изменилась на

Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона) следует:

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы:

Импульс силы также является векторной величиной.

Импульс силы равен изменению импульса тела (II закон Ньютона в импульсной форме):

Обозначив импульс тела буквой p второй закон Ньютона можно записать в виде:

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу.

Для определения изменения импульса удобно использовать диаграмму импульсов, на которой изображаются вектора импульсов, а также вектор суммы импульсов, построенный по правилу параллелограмма.

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которой мы изучаем, называется механической системой или просто системой.

В механике часто встречаются задачи, когда необходимо одновременно рассматривать несколько тел, движущихся по-разному. Таковы, например, задачи о движении небесных тел, о соударении тел, об отдаче огнестрельного оружия, где и снаряд и пушка начинают двигаться после выстрела, и т. д. В этих случаях говорят о движении системы тел: солнечной системы, системы двух соударяющихся тел, системы «пушка — снаряд» и т. п. Между телами системы действуют некоторые силы. В солнечной системе это силы всемирного тяготения, в системе соударяющихся тел — силы упругости, в системе «пушка — снаряд» — силы, создаваемые пороховыми газами.

Импульс системы тел будет равен сумме импульсов каждого из тел. входящих в систему.

Кроме сил, действующих со стороны одних тел системы на другие («внутренние силы»), на тела могут действовать еще силы со стороны тел, не принадлежащих системе («внешние» силы); например, на соударяющиеся бильярдные шары действует еще сила тяжести и упругость стола, на пушку и снаряд также действует сила тяжести и т. п. Однако в ряде случаев всеми внешними силами можно пренебрегать. Так, при изучении соударения катящихся шаров силы тяжести уравновешены для каждого шара в отдельности и потому не влияют на их движение; при выстреле из пушки сила тяжести окажет свое действие на полет снаряда только после вылета его из ствола, что не скажется на величине отдачи. Поэтому часто можно рассматривать движения системы тел, полагая, что внешние силы отсутствуют.

Читайте также:  Трехфазный автомат 25а какая мощность

Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

ЗАМКНУТАЯ СИСТЕМАЭТО СИСТЕМА ТЕЛ, КОТОРЫЕ ВЗАИМОДЕЙСТВУЮТ ТОЛЬКО ДРУГ С ДРУГОМ.

Закон сохранения импульса.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках:

  1. Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел.
  2. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике — при забивании свай, ковке металлов и т.д

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.

Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости).

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α 3 Дж; 1кВт·ч = 3,6·10 6 Дж

Если тело способно совершить работу, то говорят, что оно обладает энергией.

Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается Е Единица энергии в СИ [1Дж = 1Н*м]

Механическая работа есть мера изменения энергии в различных процессах А = ΔЕ.

Различают два вида механической энергии – кинетическая Ек и потенциальная Еp энергия.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергий

Е = Ек + Еp

Кинетическая энергия – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергиейтела:

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m, движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятиепотенциальной энергии или энергии взаимодействия тел.

Потенциальная энергияэнергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.

Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями. Такие силы называются консервативными. Работа консервативных сил на замкнутой траектории равна нулю.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Потенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй):

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Понятие потенциальной энергии можно ввести и для упругой силы. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях упругая сила совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком :

где k – жесткость пружины.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Сумму E = Ek + Ep называют полной механической энергией.

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

Е = Ек + Еp = const

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

Источник

Adblock
detector