Меню

Мощность эквивалентной дозы мэд гамма излучения

ДОЗЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

ДОЗЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ — физические величины, принятые в дозиметрии ионизирующих излучений для количественной характеристики поля излучения и воздействия излучения на облучаемый объект.

Основной величиной, применимой к любому виду ионизирующего излучения (альфа- и бета-частицы, гамма-излучение, протоны, нейтроны, мезоны и т. д.), является поглощенная доза излучения (D) — отношение энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме (D — dE/dm). Специальная единица поглощенной дозы — рад (pad). 1 рад соответствует поглощению энергии излучения 100 эрг в 1 г вещества (1 рад = 100 эрг/г). В Международной системе единиц (СИ) единицей поглощенной дозы излучения является грей (Гй), который определяется как 1 Дж/кг. Единицы рад и грей связаны следующим соотношением: 1 рад = 10 -2 Гй.

Производные единицы поглощенной дозы — килорад (крад), милли-рад (мрад), микрорад (мкрад) и т. д.

Увеличение поглощенной дозы излучения, отнесенное к единице времени, называется мощностью поглощенной дозы (P). P = dD/dt, где dD — приращение поглощенной дозы за интервал времени dt. Единицей мощности поглощенной дозы является любое частное от деления рада (грея) или его производной единицы на единицу времени (рад/час, рад/мин, рад/сек, мрад/час, мкрад/сек, Гй/с и т. д.).

Физ. мерой воздействия излучения на все облучаемое тело или на определенную его часть является интегральная поглощенная доза Dинт. Она равна поглощенной энергии излучения в массе тела (или его части). Интегральная доза излучения измеряется в единицах г-рад, кг-рад и т. п.

Поскольку поглощенная доза излучения неоднозначно определяет воздействие фотонов и частиц различных видов и энергии на живой организм, для сопоставлений при хрон, облучении введена величина эквивалентная доза излучения (Dэкв), единицей измерения к-рой является бэр (бэр). За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, к-рая при хрон, облучении вызывает такой же биол, эффект, что и 1 рад рентгеновского или гамма-излучения (см. Относительная биологическая эффективность излучений, Фактор качества).

Наряду с поглощенной дозой излучения, являющейся универсальной величиной, широко пользуются экспозиционной дозой (D) излучения, применимой только для воздуха и для фотонного (рентгеновского и гамма-) излучения с энергией до 3 МэВ.

Экспозиционная доза основана на ионизирующем действии излучения.

Для фотонного излучения не всегда наблюдается однозначная связь между поглощенной (т. е. переданной электронам в результате элементарных актов взаимодействия) энергией фотонов в данном объеме и ионизацией, произведенной этими вторичными электронами, т. к. часть вторичных электронов, пробеги которых больше линейных размеров этого объема или которые образованы у его границ, произведет ионизацию вне этого объема. Кроме того, в объеме могут произвести ионизацию вторичные электроны, образованные фотонами, поглощенными вне этого объема.

Исходя из особенностей взаимодействия фотонного излучения с веществом, экспозиционную дозу определяют как отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха с массой dm, полностью остановились в воздухе, к массе воздуха dm в указанном объеме: D0 — dQ/ dm.

Специальная единица экспозиционной дозы излучения — рентген (см. Радиологические величины, единицы). В Международной системе единиц (СИ) единицей экспозиционной дозы излучения является кулон на килограмм (Кл/кг). Единица рентген связана с ней следующим соотношением: 1 P = = 2,58*10 -4 Кл/кг. Производные единицы экспозиционной дозы излучения — миллирентген (мР) и микрорентген (мкР). Экспозиционная доза излучения, отнесенная к единице времени, называется мощностью экспозиционной дозы. Она измеряется в Р/час, мР/мин, мкР/час, мкР/сек и т.д.

При экспозиционной дозе в 1 P электроны и позитроны, образованные фотонами в 1 см 3 воздуха (при 0° и 760 мм рт. ст.), создадут в воздухе 2,08*10 9 пар ионов. Если учесть, что средняя энергия, затрачиваемая на образование одной пары ионов в воздухе, равна 34 эВ, то при экспозиционной дозе 1 P энергия фотонов, переданная электронам и позитронам в 1 см 3 , равна 0,114 эрг/см 3 , а поглощенная доза — 88 эрг/г, или 0,88*10 -2 Гй.

Однозначная связь между экспозиционной и поглощенной дозами может быть установлена, когда поглощенная доза измеряется в воздушном объеме, окруженном слоем воздуха или воздухоэквивалентного вещества, толщина к-рого больше или равна пробегу вторичных электронов, т. е. когда соблюдается условие электронного равновесия.

В этом случае при экспозиционной дозе 1 P поглощенная доза в воздухе равна 88 эрг/г. Это энергетический эквивалент рентгена.

Между экспозиционной дозой D0 и измеренной в условиях электронного равновесия поглощенной дозой D в какой-либо другой среде существует следующее соотношение D = kD0, где k имеет размерность рад/Р.

Поглощенная доза в воде и мышечной ткани отличается на 4—10% от поглощенной дозы в воздухе вследствие того, что эффективный атомный номер Zэфф воды и мышечной ткани близок, но не равен Zэфф воздуха. Вследствие этого в интервале энергии фотонного излучения 150 кэВ —3 МэВ k = 0,93 рад/P для воды и мышечной ткани и 0,97 рад/Р для жировой клетчатки, т. е. при экспозиционной дозе в 1 Р, поглощенная доза в воде и мышечной ткани в условиях электронного равновесия будет равна 93 рад. Для костной ткани, ZЭфф к-рой больше, чем у воздуха, а следовательно, и более существенно фотоэлектрическое поглощение в области малых энергий, значение k будет изменяться от 4,74 до 0,88 рад/P с увеличением энергии от 10 до 200 кэВ; начиная с 200 кэВ значение k остается примерно постоянным и равным 0,88 рад/Р.

При гамма-терапии, а также при ряде биол, экспериментов важно знать распределение дозного поля (см.) в облучаемом объекте, на основании чего можно судить о поглощенной дозе излучения в различных точках. Определение дозы в какой-либо точке внутри облучаемого объекта можно производить при наличии внутри него воздушной полости, что позволяет измерить в ней ионизацию. Такие измерения проводят обычно на моделях (фантомах). Фантомы изготовляются из тканеэквивалентных веществ, т. е. из веществ, у которых ослабление и рассеяние излучения происходят так же, как и в мышечной ткани (см. Фантомы дозиметрические). Такими веществами являются вода, парафин, картон, плексиглас. Помещая ионизационную камеру с тканеэквивалентными стенками в различных точках фантома, определяют распределение дозного поля, по к-рому можно судить о распределении поглощенной дозы.

Доза, создаваемая в глубине облучаемого объекта, называется глубинной дозой (Dгл). Она складывается из дозы, создаваемой прямым излучением источника и рассеянным излучением. Доза, создаваемая рассеянным излучением, зависит от энергии излучения, геометрии облучения и размера объекта.

Поверхностная доза (Dп) — доза, создаваемая на поверхности облучаемого объекта. Она больше, чем доза, измеренная в воздухе в той же точке в отсутствие объекта, что обусловлено обратным рассеянием. Напр., для излучения с энергией 200 кэВ обратное рассеяние может достигать 20—25% от дозы первичного излучения в этой же точке, для гамма-излучения 60 Со оно равно 1 — 3% в зависимости от размеров поля облучения.

Читайте также:  Формула для расчета мощности передатчика

Отношение глубинной дозы к дозе в воздухе в месте расположения поверхности облученного объекта D’ называется относительной глубинной дозой (Dгл/D’). Эта величина, выраженная в процентах, называется процентной глубинной дозой (Dгл/D’×100). Иногда относительной глубинной дозой называют отношение глубинной дозы к поверхностной (Dгл/Dп).

Дозы ионизирующих излучений в медицине и биологии. В естественных условиях организм животных и человека подвергается постоянному воздействию космических лучей и излучения естественных радиоактивных элементов, присутствующих в воздухе, почве и в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах — до 1000 мбэр в год.

В современных условиях в процессе жизнедеятельности человек сталкивается с превышениями этого среднего уровня радиации. Для лиц, работающих в сфере действия ионизирующего излучения, установлены значения предельно допустимой дозы (ПДД) на все тело (см. Предельно допустимые дозы, излучения), которые при длительном воздействии не вызывают у человека нарушения общего состояния, а также изменения функций кроветворения и воспроизводства. Для ионизирующего излучения установлена ПДД 5 бэр в год. Расчет дозовых нагрузок производится с учетом коэффициента качества разных видов ионизирующего излучения.

Для оценки отдаленных проявлений действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутаций у человека, не превышает 100 бэр на поколение; имеются, однако, указания и на еще меньшие значения этой дозы (3—12 бэр).

Генетически значимые дозы для населения находятся в пределах 7 — 55 мбэр/год.

Использование излучения в мед. практике приводит к увеличению дозовых нагрузок на население. Рентгенол. обследование сопровождается лучевым воздействием на те или иные поверхности тела в дозах 0,04 Р — 7,0 P при производстве снимков и до 50 P при просвечиваниях (табл. 1—4). Эти значения дозы имеют тенденцию к снижению.

Дозовые нагрузки при радиоизотопной диагностике в зависимости от используемого радиоактивного нуклида при однократном применении колеблются от 0,01 до 600 бэр/мкКи на все тело и от 0,003 до 6000 бэр/мКи на отдельные органы и ткани (см. Критический орган).

Медперсонал рентгеновских кабинетов, врачи-радиологи и медперсонал радиоманипуляционных кабинетов при выполнении различных работ подвергаются лучевому воздействию на отдельные области тела в дозах 0,03—0,18 бэр/сут (табл. 5).

При лучевой терапии злокачественных опухолей в зависимости от характера патол, процесса проводятся локальные облучения в дозах в среднем до 8000 бэр за 3—4 недели.

В радиобиологии различают следующие дозовые величины, характеризующие гибель животных в течение фиксированного времени (30— 60 дней): минимальная летальная доза (DLM), доза половинной (50%) выживаемости или смертности (DL50) в течение определенного срока, минимальная абсолютно летальная доза (МАЛД)— минимальная доза, вызывающая гибель всех животных.

Значения этих доз колеблются в зависимости от вида и линии животных. Так, напр., DL50 при однократном равномерном воздействии гамма-излучением лежат в пределах от 250 рад (2,5 Гй) для собак до 900 рад (9 Гй) для отдельных линий мышей. Для человека при тотальном облучении гамма-излучением МАЛД принимается равной 600 рад (6 Гй), a DL50 —400 рад (4 Гй).

Рис. 1. Кривая зависимости смертности обезьян Масаса rhesus от дозы излучения, демонстрирующая различный прирост смертности животных в разных диапазонах доз.

Рис. 2. Кривая зависимости продолжительности жизни мышей от дозы гамма-излучения.

Зависимость смертности от дозы выражается S-образной кривой (рис. 1). Зависимость средней продолжительности жизни от дозы (рис.2) проявляется в том, что по мере увеличения дозы происходит постепенное сокращение продолжительности жизни, пока она не достигает 3—3,5 сут. (ок. 1000 рад)— отрезок АБ. При дальнейшем возрастании дозы до 6000—10 000 рад (60— 100 Гй) средняя продолжительность жизни не изменяется — отрезок БВ. Увеличение дозы св. 10 000 рад (100 Гй) приводит к сокращению продолжительности жизни до одних суток, а затем и нескольких часов— отрезок ВГ. Начиная с дозы 20 000 рад отмечаются случаи «смерти под лучом». В зависимости от этих данных определяются формы лучевой болезни (см.): острая, острейшая и молниеносная.

Таблица 1. Экспозиционная доза на поверхности тела и интегральная доза, получаемые обследуемым при рентгеноскопии без электронно-оптического преобразователя

Напряжение на трубке, кВ

Расстояние источник-кожа, см

Поле облучения, см 2

Время исследования, сек

Экспозиционная доза на поверхности тела, P

Рентгеноскопия органов грудной клетки профилактическая

Источник



МОЩНОСТЬ ЭКВИВАЛЕНТНОЙ ДОЗЫ

ионизирующего излучения — физ. величина, равная отношению приращения эквивалентной дозы излучения за малый промежуток времени к этому промежутку. Единица М. э. д. (в СИ) — Зв/с (1 Вт/кг = 1 Зв/с). Не подлежат применению внесистемная ед. М. э. д. — бэр в секунду, кратные и дольные от неё: 1 бэр/с — 0,01 Зв/с = 10 мЗв/с; 1 бэр/мин = 0,01/60 Зв/с = 0,1667 мЗв/с; 1 бэр/ч = 0.01/3600 Зв/с = 2,778 мкЗв/с. См. Зиверт.

Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое «МОЩНОСТЬ ЭКВИВАЛЕНТНОЙ ДОЗЫ» в других словарях:

Мощность эквивалентной дозы — 4. Мощность эквивалентной дозы Величина, введенная для оценки радиационной опасности хронического облучения излучением произвольного состава и определяемая отношением приращения поглощенной дозы за малый интервал времени к этому интервалу… … Словарь-справочник терминов нормативно-технической документации

мощность эквивалентной дозы — lygiavertės dozės galia statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. equivalent dose rate vok. äquivalente Dosisleistung, f rus. мощность эквивалентной дозы, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

мощность эквивалентной дозы — lygiavertės dozės galia statusas T sritis fizika atitikmenys: angl. equivalent dose rate vok. äquivalente Dosisleistung, f rus. мощность эквивалентной дозы, f pranc. débit de dose équivalente, m … Fizikos terminų žodynas

Мощность эквивалентной дозы гамма-излучения в помещении — 7.7. Мощность эквивалентной дозы гамма излучения в помещении мощность эквивалентной дозы гамма излучения в воздухе, измеренная в центре помещения на высоте 1 м от пола. В условиях отсутствия в ограждающих конструкциях помещения радиационных… … Словарь-справочник терминов нормативно-технической документации

Мощность эквивалентной дозы гамма-излучения на открытой местности — 7.8. Мощность эквивалентной дозы гамма излучения на открытой местности мощность эквивалентной дозы гамма излучения в воздухе на высоте 1 м от поверхности земли на достаточном удалении от радиационных аномалий и зданий. Источник … Словарь-справочник терминов нормативно-технической документации

мощность эквивалентной дозы внешнего гамма-излучения — 3.15 мощность эквивалентной дозы внешнего гамма излучения: Мощность поглощенной дозы, определяемая с учетом биологического воздействия излучения на различные органы и ткани организма человека. Источник: ГОСТ Р 54964 2012: Оценка соответствия.… … Словарь-справочник терминов нормативно-технической документации

мощность — 3.6 мощность (power): Мощность может быть выражена терминами «механическая мощность на валу у соединительной муфты турбины» (mechanical shaft power at the turbine coupling), «электрическая мощность турбогенератора» (electrical power of the… … Словарь-справочник терминов нормативно-технической документации

Мощность дозы — отношение приращения дозы (поглощенной, эквивалентной, эффективной) dD, dH, dE за интервал времени dt к этому интервалу времени: На практике за единицу времени могут приниматься час, сутки, год. См. также Доза ионизирующего излучения … Российская энциклопедия по охране труда

Читайте также:  Потребляемая мощность 670 квт

величины дозы — Доза на орган organ dose Средняя поглощенная доза DT на ткань или орган Т человека, выражаемая формулой: ФОРМУЛА РИС где mT – масса ткани или органа, D – поглощенная доза в элементе массы dm, а T – переданный объем полной энергии. Иногда… … Справочник технического переводчика

Доза — основная мера экспозиции, характеризующая количество химического вещества, воздействующее на организм. Источник: Р 2.1.10.1920 04: Руководство по оценке риска д … Словарь-справочник терминов нормативно-технической документации

Источник

РАДИАЦИОННЫЙ КОНТРОЛЬ ОБЪЕКТОВ КАПИТАЛЬНОГО СТРОИТЕЛЬСТВА

Исторический экскурс

Атомы вещества состоят из ядер (с протонами и нейтронами) и вращающих вокруг них электронов. У большинства они устойчивы, а у некоторых ядра обладают нестабильностью и могут излучать в пространство энергию. Это и есть радиоактивное излучение, которое подразделяется на α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение).

Альфа-излучение – это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение – это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение – это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

В отношении радиоактивности по нормам радиационной безопасности принято использовать словосочетание «ионизирующее излучение». Ионизация – процесс превращения атомов молекул в ионы. Ионы могут быть заряжены положительно и отрицательно. Положительно заряженные ионы образуются путем выбивания энергией электронов из атома. Отрицательно заряженные ионы появляются если нейтральная частица присоединила свободный электрон к атому.

Почему необходим контроль и возможные последствия превышений

Воздействие радиации на организм несет в себе как положительные, так и отрицательные стороны. Малые дозы радиации стимулируют обновление клеток в организме, уменьшают вероятность развития онкологических заболеваний. Например, в медицине против опухолей используют радиотерапию – лечение ионизирующим излучением, специально направленным на проблемный участок тела или орган. Радоновые ванны, широко используемые в схемах санаторно-курортного лечения, укрепляют иммунную, нервную и сердечно-сосудистую системы.

Однако при интенсивном и продолжительном воздействии на человека ионизирующее излучение вызывает необратимые негативные изменения на генном уровне, что приводит к наследственным заболеваниям у последующих поколений, проблемам с иммунитетом, раковым опухолям. Чтобы население не подвергалось риску от интенсивного облучения, радиационный контроль осуществляется на законодательном уровне.

Основные санитарные правила обеспечения радиационной безопасности
(ОСПОРБ-99/2010) устанавливают требования по защите людей от вредного радиационного воздействия при всех условиях облучения от источников ионизирующего излучения. Согласно п.2.1 ОСПОРБ-99/2010 «Радиационная безопасность персонала, населения и окружающей среды считается обеспеченной, если соблюдаются основные принципы радиационной безопасности (обоснование, оптимизация, нормирование) и требования радиационной защиты, установленные Федеральным законом от 09.01.96 N 3-ФЗ «О радиационной безопасности населения», НРБ-99/2009 и действующими санитарными правилами.» Исходя из Статьи 3. данного ФЗ основными принципами обеспечения радиационной безопасности являются:

· принцип нормирования – непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;

· принцип обоснования – запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;

· принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности» (НРБ-99/2009) устанавливает основные пределы доз, допустимые уровни ионизирующего излучения, которые являются обязательными для всех юридических и физических лиц, независимо от их подчиненности и формы собственности, в результате деятельности которых возможно облучение людей, а также для администраций субъектов Российской Федерации, местных органов власти, граждан Российской Федерации, иностранных граждан и лиц без гражданства, проживающих на территории Российской Федерации. Годовая доза облучения населения не должна превышать 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год.

Согласно Федеральному закону от 30.12.2009 N 384-ФЗ (ред. от 02.07.2013) «Технический регламент о безопасности зданий и сооружений» ст. 10 п.1 «Здание или сооружение должно быть спроектировано и построено таким образом, чтобы при проживании и пребывании человека в здании или сооружении не возникало вредного воздействия на человека в результате физических, биологических, химических, радиационных и иных воздействий».

Что контролируем

Основными контролируемыми показателями радиационной безопасности на объектах капитального строительства являются:

1. Мощность дозы гамма-излучения (далее МЭД);

2. Среднегодовая эквивалентная равновесная объемная активность изотопов радона

4. Плотность потока радона (далее ППР) с поверхности грунта в пределах площади застройки;

5. Удельная эффективная радиоактивность естественных радионуклидов (далее ЕРН) в строительных материалах.

Рассмотрим каждый показатель поподробнее.

Мощность эквивалентной дозы (МЭД)

Эквивалентная доза – поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения. Для альфа- бета- и гамма- излучения он равен единице. Если на организм воздействует сразу несколько разных источников излучения, то эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения. Мощность эквивалентной дозы определяет насколько организм поглощает дозу излучения в течение определенного времени. Источниками излучения на объектах строительства могут быть привозимые стройматериалы, геологические слои, которые могут быть разработаны на подготовительном этапе строительства. Из-за того, что гамма-излучение обладает максимальной проникающей способностью, оно имеет наибольший приоритет при радиационном контроле.

Среднегодовая эквивалентная равновесная объемная активность изотопов радона (ЭРОА) и плотность потока радона (ППР) с поверхности грунта в пределах площади застройки

Радон является продуктом распада урана и представляет собой бесцветный радиоактивный тяжелый газ, не имеющий запаха, в силу чего его невозможно как-либо почувствовать без использования специального оборудования. Все изотопы этого газа короткоживущие, иными словами они довольно быстро распадаются: у самого устойчивого из них период полураспада составляет около четырех суток, у других же он не доходит и до минуты. Изотопы радона имеют малую проникающую способность альфа-излучения, барьером которого может служить даже обычный лист бумаги или кожа человека, но опасность их выражается не прямым воздействием на организм. Как говорилось ранее, радионуклиды могут содержаться в стройматериалах, в воде, почве. Попадая в организм человека вместе с вдыхаемым воздухом, питьем или едой, изотопы радона поражают внутренние органы, вызывая серьезные нарушения в работе организма.

Читайте также:  Как уменьшить мощность моторчика

Удельная эффективная радиоактивность естественных радионуклидов в строительных материалах

Естественные радионуклиды — нуклиды природного происхождения, содержащиеся в строительных материалах: радий ( 226 Ra), торий ( 232 Th), калий ( 40 K). Удельная активность радионуклида — отношение активности радионуклида в образце к массе образца. Источником радиации могут быть сами материалы, которые используются при строительстве. Поэтому необходимо регулярно анализировать не только сам участок строительства, но и поступающее на него «сырьё».

Радиационный контроль

Радиационное обследование участков территорий под строительство зданий и сооружений — комплекс измерений (испытаний) с целью оценки величины радиологических показателей земельного участка для последующего установления соответствия их требованиям санитарных правил и гигиенических нормативов или определения содержания, последовательности и объема мероприятий по обеспечению радиационной безопасности населения.

Лаборатория санитарно-эпидемиологического и радиационного контроля Государственного бюджетного учреждения города Москвы «Центр экспертиз, исследований и испытаний в строительстве» располагает самым современным оборудованием в сфере радиационной безопасности. Для гамма-съемки используют поисковые дозиметры-радиометры. Для измерений ППР и ЭРОА используют измерительный комплекс и сорбционные камеры. Удельную эффективную радиоактивность стройматериалов анализируют в спектрометрической установке.

Контроль МЭД

Для оценки земельных участков под строительство в рамках инженерно-экологических изысканий радиоактивное обследование проводят в 2 этапа. На первом этапе проводят съёмку с целью выявления и локализации возможных радиационных аномалий и определения объема дозиметрического контроля при измерениях мощности дозы гамма-излучения. Если показания прибора в ходе процесса контроля не превышают средние значение в 2 и более раз, а среднее значение не выше 0,3 мкЗв/ч на земельных участках под строительство жилых и общественных зданий, или 0,6 мкЗв/ч — на участках под строительство производственных зданий и сооружений, то считается, что локальные радиационные аномалии на обследованной территории отсутствуют.

На втором этапе проводятся измерения мощности дозы гамма-излучения в контрольных точках, которые по возможности должны располагаться равномерно по территории участка. В число контрольных должны быть включены точки с максимальными показаниями поискового радиометра, а также точки в пределах выявленных радиационных аномалий, в том числе и после их ликвидации.

Для оценки радиационной безопасности зданий и сооружений сначала измеряют радиационный фон местности вокруг объекта в 5 контрольных точках на расстоянии не менее 30м от ограждающих конструкций. Затем обследует выбранные помещения, обходя сначала по периметру и диагонали на расстоянии 25 см от стен и пола. Контрольной точкой считается:

• точка в центре помещения на высоте 1м от поверхности пола;

• точка максимума в зоне локальной аномалии, в случае обнаружения;

• точка с максимальными показаниями радиометра в остальной части помещения.

Локальная радиационная аномалия в помещении – место, где показания прибора выше средних значений в 2 и более раз.

Согласно МУ 2.6.1.2838-11 объем работ по гамма съемке помещений определяется из количества помещений. В односемейных домах, школах и детских садах обследования проводятся во всех помещениях. В многоквартирных домах все зависит от масштаба объекта.

Контроль ППР с поверхности земли

Измерение плотности потока радона на земельных участках предпочтительно проводят в пределах контура проектируемого здания в узлах сети контрольных точек. Шаг сети контрольных точек должен приниматься из расчета не более 10 м на 10 м, а общее число точек должно быть не менее 10 независимо от площади застройки здания. Расположение контрольных точек должно быть по возможности равномерным. Каждая контрольная точка располагается на горизонтальном участке размером не менее 50 на 50 см. Предпочтение отдается участкам с менее плотным и наименее влажным грунтом, где наиболее вероятны высокие значения ППР.

Перед проведением измерений выполняется предварительная подготовка площадки вокруг контрольной точки, которая заключается в зачистке от снега, мусора, растительности и крупных камней, рыхления на глубину (3÷5) см и выравнивания поверхности участка. Для отбора пробы в каждой контрольной точке устанавливается накопительная камера с активированным углем на срок от 3 до 5 часов. По истечении времени отбора активированный уголь пересыпается из накопительных камер в сорбционные колонки. После доставки проб в лабораторию проводят измерения на измерительном комплексе.

Контроль ЭРОА в помещениях

ЭРОА измеряют в каждом обследуемом помещении как минимум в одной контрольной точке. Отбор проб воздуха производят на высоте 1 — 2 м от пола не ближе 0,5 м от стен помещения. Отбор проб воздуха и проведение измерения объемной активности радона и торона в контрольных точках осуществляют с помощью радиометра радона. На первом этапе обследования проводят отбор проб воздуха для определения содержания радона. Через 5 – 14 часов в лабораторных условиях проводят измерение содержания торона в данных пробах и проводят расчет полученных значений.

Контроль ЕРН в строительных материалах

Определение удельных активностей ЕРН в сыпучих материалах, строительных изделиях и облицовочных материалах из природного камня проводят на навесках, отобранных из представительной пробы. Представительную пробу получают путем перемешивания не менее 10 точечных проб.

Результаты работы

За 2019 год Лаборатория санитарно-эпидемиологического и радиационного контроля Государственного бюджетного учреждения города Москвы «Центр экспертиз, исследований и испытаний в строительстве» провела более чем 1200 работ на объектах капитального строительства в сфере радиационной безопасности. По всем выявленным несоответствиям подготовлены отчеты и переданы в комитет Государственного Строительного Надзора города Москвы для принятия мер административного воздействия. На момент публикации статьи все нарушения устранены.

Библиографический список:

1. ГОСТ 30108-94 «Определение удельной эффективной активности естественных радионуклидов»;

2. Федеральный закон от 09.01.96 N 3-ФЗ «О радиационной безопасности населения»;

3. МУ 2.6.1.2398-08 «Радиационный контроль и санитарно-эпидемиологическая оценка земельных участков под строительство жилых домов, зданий и сооружений общественного и производственного назначения в части обеспечения радиационной безопасности»;

4. МУ 2.6.1.2838-11 «Радиационный контроль и санитарно-эпидемиологическая оценка жилых, общественных и производственных зданий и сооружений после окончания их строительства, капитального ремонта, реконструкции по показателям радиационной безопасности»;

5. СанПиН 2.6.1.2523-09 Нормы радиационной безопасности (НРБ-99/2009);

6. СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)».

Статью написал и оформил:

Лаборант Лаборатории «СЭиРК» Кружалин Д.И.

Статью правил и утвердил:

Начальник Лаборатории «СЭиРК» Ипполитов Д.Е.

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Источник

Adblock
detector