Lm 350 стабилизатор параметры

Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

* – зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

варианты корпуса

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I0 (1), где I0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I0 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).

На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.

Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

Изучая темы, касающиеся использования трехвыводных стабилизаторов напряжения серии LM, нигде не нашлось рекомендуемого проекта печатной платы. Поэтому будем восполнять пробел и приведем несколько правил, позволяющих добиться высоких параметров от стабилизатора. Представляем свой проект размещения элементов, прототип схемы собранной на макетной плате и результаты измерений. Уверены, что это пригодится не только новичкам, так как LM317, LM337, LM350 очень часто используются в разных блоках питания как отдельно, так и в составе приборов.

Схема включения стабилизатора

Итак, нужен был линейный стабилизатор симметричного напряжения +/- 5 В при токе порядка 2 А для питания аналоговой схемы. На входе стабилизатора используется дешевый импульсный блок питания 9 В, 3 А.

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

К сожалению, выходные напряжения импульсных блоков питания содержат значительные пульсации — для нагрузки 2 А амплитуда пульсаций около 0.1 В.

На что обратить внимание

  1. Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
  2. Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
  3. Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
  4. В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.

После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

Печатная плата для LM3ХХ

Вот для LM317 (LM350 — это версия LM317 с более высоким током) указан рекомендуемый вид печатной платы.

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

Большое влияние на возможное возбуждение схемы оказывает слишком большой конденсатор на выходе. В каком-то даташите даже было написано, что на выходе может быть максимум 10 мкФ low ESR, лучше танталовый. Когда-то сами в этом убедились, когда LM317 работала как источник тока. Выходное напряжение скакало от нуля до максимума. Уменьшение емкости на выходе до 10 мкФ эффективно устранило этот дефект. Кроме того, большой конденсатор на выходе может вызвать большие броски тока в нагрузке, когда что-то пойдет не так. С другой стороны, отсутствие конденсатора вызывает инерцию при изменениях тока нагрузки.

Учтите, что для микросхемы LM350 токи довольно больше, что вызывает заметное падения напряжения на дорожках. Подробнее читайте в даташите на ЛМ350.

Задача диода D1 в разрядке выходного конденсатора в ситуации, когда напряжение на LM3xx стало выше, чем раньше (например, во время регулировки).

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

Еще один важный момент — в блоке питания диоды D1 и D3 должны быть подобраны соответствующим образом для предохранителя так, чтобы именно предохранитель сгорел, а не они. Проще всего установить их самые большие по току, какие имеются в наличии (по схеме 6А6 на 6 ампер).

Источник

Зарядное устройство для аккумуляторов 12В на LM350

Всем здравствуйте. Продолжаю публикации на тему простых зарядных устройств для аккумуляторов. Всем известный регулятор напряжения LM350 также можно использовать для зарядных устройств свинцово-кислотных аккумуляторов.

Этот стабилизатор характеризуется достаточно неплохими электрическими характеристиками, на выходе можно получить регулируемое напряжение (в диапазоне от 1,2 до 33В), выходной ток не менее 3А (внутреннее ограничение микросхемы обычно составляет 4,5А), хорошую температурную стабильность и точность управления лучше, чем 1%.

Схема простого зарядного устройства на микросхеме стабилизатора LM350 показана на рисунке.

Аккумулятор заряжается при постоянном напряжении 14,6В с максимальным током около 3-4А. Напряжение порядка 16В и токе обмотки 6А и более от сетевого трансформатора подается на входную клеммную колодку U1, а затем выпрямляется диодным мостом на диодах D2-D5 и сглаживается электролитическим конденсатором C3.

LM350T стабилизатор (IO1) поддерживает напряжение между его выходом (контакт 2 IO1) и измеряется таким образом, чтобы напряжение между клеммами 2 и 1 стабилизатора IO1 было равно внутреннему опорному напряжению 1,25В. В результате постоянный ток протекает через резистор R3 и приблизительно такой же ток протекает через компоненты R2, T1, светодиод D1 и T2.

Поскольку считается идеальным, чтобы выходное напряжение зарядного устройства зависело от температуры окружающей среды, с температурным коэффициентом 8 мВ / C в цепи стабилизатора подключен транзистор T1, который обеспечивает эту зависимость.

Выходное напряжение стабилизатора определяется делителем компонентов R4-R6, к которому подключена база транзистора T1. Подстроечным резистором R6 можно воспользоваться для установки выходного напряжения в диапазоне от +13,5 до +14,6 В, оптимальное напряжение — +14,4 В. Диапазон регулирования выходного напряжения можно регулировать, изменяя сопротивление резистора R5.

Транзистор T2 предотвращает разрядку подключенной батареи через резистор R3, когда зарядное устройство полностью отключено. Транзистор T2 закрывается напряжением от сглаживающего конденсатора C3, который подается через резистор R1 на его базу. При отсутствии напряжения питания T2 отключается, и ток не может течь через цепь компонентов R1, R2 и т. д.

Электролитические конденсаторы C1 и C2 предотвращают возбуждение стабилизатора и должны быть установлены танталовые. Выход зарядного устройства подключен к выходной клеммной колодке U2. Зарядка показывает зеленый светодиод D1.

Как обычно, зарядное устройство выполнено на односторонней печатной плате один из вариантов которой представлен на рисунке.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector