Меню

Кулер с регулятором оборотов pwm

Регулировка скорости оборотов вентилятора

Компьютерный вентилятор вещь нужная, но бывает что он начинает шуметь. И если дело в обычном ТО, то это проще простого ( с ТО вентилятора можно ознакомиться здесь ). Но вот что делать, если вентилятор сам по себе громко шумит — ответ вы найдете в данной статье.

И так, начнем по порядку.

1. Есть специальные вентиляторы у которых можно задать регулирование оборотов (соответственно и уменьшить шум).

Как правило они используются на кулере процессора. Так же есть возможность крепления их к корпусу и подключение их осуществляеться к разъёмам материнской платы. Упровлять ими можно через настройки BIOS`а материнской платы.

Ну а в биосе можно задать кривую оборотов вентилятора самому, но если вы не очень понимаете что да как - лучше воспользуйтесь предустановленными профилями.

Лучше использовать тихий профиль, но если планируете разгонять, то оборотов стоит добавить.

Можно конечно и на максимум выкрутить, но тогда вентилятор гудеть будет.

Единственный их минус — это цена. Они как правило на 100-200 рублей стоят дороже, чем обычные трехпиновые которые не имеют функции регулирования оборотами (но это условно, на самом деле — все регулируется проще простого, но об этом ниже)

2. Трехпиновые вентиляторы регулируются путем уменьшения подачи на них напряжения.

И самый первый способ — подключение их к 4-х пиновым разъёмам (один штырек просто будет торчать рядом). А через BIOS материнской платы — вы уже настраиваете кривую оборотов.

Как трехпиновый разъём можно подключать к четырехпиновому, так и наоборот можно делать (на разъёме есть

Для вентиляторов с трехпиновым разъемом в биосе нужно просто выбрать вместо PWM напряжение, дальше остается настроить кривую оборотов вентилятора и готово.

Если таких разъемов на материнской плате нет, либо отсутствует такая возможность, то для регулировки скорости трехпиновых вентиляторов можно использовать готовые решения. Либо сделать их самому.

Начнем с готовых решений (листаем картинки, там все описано).

Контроллер управления скоростью вращения вентиляторов на переднюю панель.

Другая вариация контроллера управления скоростью вращения вентиляторов на переднюю панель. Их на самом деле может быть множество вариаций.

В некоторых компьютерных корпусах есть предустановленные контроллеры оборотов вентилятора (правда всего 3 положения: выключены; тихо; полная скорость).

На Али-Экспрессе можно заказать внутренний контроллер для корпуса ( тоже 3 положения).

Либо можно взять переходник (но если у вас есть разъемы проще сделать самому). Только не забудьте проверить на сколько он греется при работе. Если руку держать на нем не комфортно, то используйте еще один. Минус еще в том - что ограничивает скорость на фиксированное значение 15-20%, если вам надо уменьшить скорость оборотов в 2 раза то нужно будет 2, а то и 3 подобных девайса.

Ну а теперь, что можно сделать самому (листаем картинки).

Достаточно просто самому впаять резистор 25-30 Ом мощностью 1 Ватт в +12v линию питания на вентилятор (либо переходник), если будет греться, следом добавить еще один.

Либо собрать по подобной схеме. Тогда вентилятор можно будет регулировать плавно, а не только на фиксированное значение.

Если у вентилятора 4-пиновый разъем Molex (либо сделать переходник с 3-pin на Molex), то все гораздо проще (главное, что бы на кабелях блока питания были такие же разъёмы).

Все гораздо проще если у вентилятора есть Molex разъём вынесенный отдельно. В нем можно просто переставить провода и будет вам

Согласно этой распиновке достаточно поменять провода. Кстати на 5 или 7 вольтах вентиляторы крутятся довольно тихо.

Чуть не забыл, возможно вам понадобиться распиновка разъёмов самого вентилятора

Если воспользоваться какими либо из методов в данной статье — вентиляторы станут работать тише, правда и воздушный поток при этом уменьшиться. Этот факт тоже надо учитывать.

Если же у вас возникает обратная ситуация — нужно увеличить обороты вентилятора чем он рассчитан, то это дохлый номер. Проработает он так недолго (не хватит ресурса, либо сгорит если неправильно его подцепите).

При возникновении подобных ситуаций проверьте:

  • Соответствует ли кулер тепловыделению процессора (ведь рассеять тепловыделение, превышающее возможности кулера — не получиться, лучше брать кулер с запасом).
  • Давно ли проводилось ТО (менялась термопаста, чистился от пыли радиатор)
  • Если по первым двум пунктам все хорошо, тогда поздравляю — нужно менять корпус. Железо в нем «задыхается», тепла выделяется больше, чем из корпуса может выйти. И тут варианта 2, либо «колхозить» и дорабатывать корпус, либо менять ( о выборе корпуса можно прочитать здесь ).

Если есть какие то вопросы, либо темы для обсуждения — пишите. Очень вероятно, что они станут темой будущих статей. Всем спасибо за внимание и до новых встреч.

Источник



Подключение компьютерных вентиляторов охлаждения: все о разъемах

Корпусные вентиляторы делятся по размерам, типу подшипников, количеству оборотов и даже по способу применения. Одни заточены для создания статического давления, а другие рассчитаны на хороший воздушный поток в корпусе. И самое интересное в том, что один и тот же вентилятор можно подключить с помощью разных коннекторов. Некоторые из них умеют регулировать скорость, а другие работают на полном ходу. Это влияет на комфорт при использовании компьютера. Чтобы подобрать правильный вентилятор, стоит хотя бы поверхностно изучить особенности и нюансы подключения.

Почему коннекторов так много

Немного истории

Когда компьютер только появился и назывался ЭВМ, транзисторы были размером со спичечный коробок, а сама вычислительная машина достигала размеров комнаты и даже квартиры. Если и было нужно охладить такую махину, то для этого использовались огромные промышленные вытяжки, поэтому никто даже не заикался о шуме и комфорте. То ли дело, когда глобальное и грозное «ЭВМ» обтесали, причесали и подкрасили, чтобы получился «компьютер».

Чуть позже серьезное изобретение совсем огламурили и стали ласково звать персональным компьютером. Спасибо Apple: им пришлось сделать многое, чтобы громоздкое чудовище превратилось в привлекательное для покупателей устройство. Другие компании, та же IBM, к примеру, тоже кое-чего добились на этом фронте.

Эти наработки в гонке за персональностью унифицировали и стандартизировали, чтобы мы получили компьютеры такими, какими они стали сейчас.

За уменьшением деталей последовало сокращение размеров корпуса. Спичечные коробки превратились в спички, а позже и вовсе в их десятую часть по размеру. Это, а также повышение мощностных характеристик, стало первым, что потребовало хорошего охлаждения.

Читайте также:  Регулятор ширина зигзага швейной машины

Но одно дело охлаждать ЭВМ в шумных рабочих зданиях, другое — остудить мощный компактный компьютер на столе школьника.

Раньше ставили на первый план стабильность и надежность. Ну а жужжит оно — да и пусть. Даже не самые древние модели компьютеров не могут похвастать хорошей системой охлаждения.

Стандартный кулер на процессоре, гудящий блок питания с восьмидесятым вентилятором и парочка ноунейм вертушек в корпусе, подключенных то ли к материнской плате, то ли напрямую к линии 12 В. Лишь бы работало. И никакой регулировки оборотов. Включил, привык к шуму пылесоса — и работаешь. Да что там, под этот шум даже Quake и Unreal заходили на ура. Но, как мы знаем, желания растут, требования тоже.

Требования к комфорту и шуму стали двигать прогресс в будущее, туда, где мы находимся сейчас. Чтобы сочетать тишину, прохладу и мощность, пользователи начали заниматься доработками и улучшениями.

За неимением автоматической регулировки оборотов, в провода впаивали резисторы, чтобы хоть как-то приструнить завывающую вертушку. Энтузиасты придумали более изощренные способы регулировки и дошли до реобасов.

Тогда такие штуки не продавались, поэтому тихие системы были только у тех, кто уверенно пользовался паяльником. Позже эту идею подхватили производители железа и стали выпускать регуляторы в заводском исполнении. А потом реобасы встроили в материнские платы и научили регулировать шум через BIOS.

Чтобы все работало, как надо, вентилятору приделали «третью ногу». То есть, провод, по которому техника ориентируется в оборотах. Так работает трехпиновая регулировка по DC. Так сказать, аналоговый способ.

Он реализован очень просто. Любой компьютерный вентилятор крутится от 12 В. На таком вольтаже будут максимальные обороты. Чтобы их снизить, уменьшают напряжение до семи или даже пяти вольт. DC — это регулировка постоянным током. Постоянными 12 вольтами или 7, 5 и далее.

За снижением вольтажа стоит специальный контроллер на материнке, от которого вентилятору достается готовое питание. На рисунке постоянный ток изображен на верхнем графике, а для контраста внизу есть переменный ток:

Простая ламповая физика — меньше напряжение, меньше света. Однако даже такую технологию поддерживали не все материнки. То есть, поддерживали, но только для мониторинга оборотов. А вот регулировать могли уже не все.

Инженеры подумали и решили, что цифровой технике нужны цифровые технологии. И внедрили технологию PWM. Это уже другая история — про вентиляторы с четырымя проводами и новые материнские платы. Между прочим, массовое использование данной технологии началось почти одновременно с выходом процессоров на платформе LGA 775. Материнские платы научились поставлять комфорт «из коробки», и с тех пор рынок вентиляторов поделился на DC и PWM. Или ШИМ, если говорить по-русски.

Широтно-импульсная модуляция — совершенно новая технология, которая требует от вентилятора наличия еще одной «ноги». Первый провод — для массы, второй — для питания, третий — для мониторинга оборотов, а четвертый — для PWM (информационный канал).

Регулировка оборотов работает еще проще: на вентилятор подается постоянное напряжение 12 В и некая информация для контроллера. В этой информации содержатся команды по открытию и закрытию транзисторов в цепи питания вентилятора. То есть, задаются прерывания. На графике это можно представить так:

Вершинка — транзистор открыт, вентилятор получает все 12 вольт. Далее следует спад — закрытие транзистора и прекращение подачи вольтажа. Так как техника цифровая, то и работа заключается в цифрах, а точнее, в долях секунд. Чем больше наносекунд транзистор находится в открытом состоянии, тем дольше подается вольтаж. Все это продолжается в пределах одного промежутка времени и с очень высокой частотой. То есть, мы можем повторить весь этот процесс с обычным DC-вентилятором вручную, если будем включать и выключать его примерно 23 тысячи раз в секунду. Это соответствует частоте 20 кГц и больше. Таким образом, для достижения максимальной скорости транзистор должен все время быть открыт и скармливать вертушке его родные 12 вольт. Если нужны тишина и комфорт, то вольтаж подается прерывисто — определенное количество раз за период.

Читайте также:  Регулятор тормоза ниссан террано

В теории переход от DC к PWM меняет не только электрические способности вентиляторов:

  • PWM-вентиляторы способны работать на более низких оборотах, снижая скорость практически до нуля;
  • Потребление таких вентиляторов уменьшается из-за повышенной чувствительности катушки;
  • КПД такой технологии выше из-за отсутствия потерь в преобразователе питания (который, собственно, в ШИМ не используется).

На практике же эти плюсы полностью зависят от качества элементной базы и исполнения самого вентилятора.

Надо сказать, что ШИМ применяется не только в вентиляторах. Даже сейчас мы наблюдаем ШИМ. Потому что в любом мониторе с диодной подсветкой применяется PWM для регулировки яркости. Вот наглядный пример и объяснение, как работает технология:

Зачем вентиляторам нужен Molex

Вообще, можно найти вентилятор с таким коннектором, что и подключить будет не к чему. Да и обычный можно положить на полочку, если коннекторы на нем и на материнке не совпадают. Такая путаница на рынке есть и будет, как была проблема с кучей зарядок для каждого телефона, пока microUSB не навел порядок.

Та же участь касается и разнообразия коннекторов. Это сейчас все регулируется, настраивается и вращается. А до некоторых пор производители оснащали четырьмя контактами только разъемы для процессорных кулеров. Остальные довольствовались тремя. Так прижился тандем DC/PWM до наших времен. И даже современные платы работают с обоими вариантами. Но бывает и такое, что разъемов просто не хватает для подключения достаточного количества вентиляторов. На помощь приходит молекс.

Molex выходит напрямую из БП и имеет четырехконтактный разъем с 12 и 5 вольтами, а также две «массы». К нему можно спокойно подцепить хоть десяток вентиляторов. Это решает проблему нехватки разъемов на материнке, чем страдают многие бюджетные модели, особенно в Micro-ATX и Mini-ITX. Но у такого подключения отсутствуют регулировка оборотов и мониторинг.

Чтобы не испортить комфорт, к которому шли десятилетиями, производители выпускают специальные модели, которые могут работать на пониженных оборотах. Это удобно для создания постоянного воздушного потока в корпусе. В таких случаях регулировка оборотов не требуется — минимальных оборотов на вдув и выдув достаточно для охлаждения системы в средней нагрузке. Зато остаются свободные пины на материнке для подключения оборотистых моделей, плюс снимается лишняя нагрузка с шины питания материнки. Тут уже каждый сам себе режиссер и придумывает сценарии использования разных разъемов сам.

Вертушки-самоцветы

Мы разобрали всего три типа коннекторов. Но бывают и другие. Например, шестиконтактные коннекторы. Это особенность самых технологичных вентиляторов. Нет, они не отличаются по характеристикам и не дуют морозом в жаркий день. Это обычные вентиляторы, но с подсветкой. Пожалуй, появление таких вентиляторов начинает новую эпоху компьютерных сборок. Как когда-то персональный компьютер превращали в комфортный, теперь комфортный ПК становится красивым.

Повальное распространение RGB в игровых сборках заставляет производителей добавлять подсветку везде. И, если наушники, мышь или клавиатура — это самостоятельные устройства и могут программироваться как угодно, то вентилятор — штука простая и не имеет встроенного контроллера для управления подсветкой. Поэтому настройкой и синхронизацией подсветки в пределах системного блока занимается материнская плата. Чтобы было красиво и по феншую, производители ввели еще несколько пинов, которые отвечают за управление подсветкой.

Причем возникла новая путаница. Каждый завел свою технологию и продвигает только ее. Это мешает собрать универсальную систему подсветки, поэтому выбор каждой детали в компьютере теперь обусловлен еще и поддержкой фирменных технологий. У Asus это Aura Sync, у Gigabyte — RGB Fusion, а MSI продвигает Mystic Light. Это только софтовая сторона вопроса.

В техническом же плане управление подсветкой различается еще и рабочим вольтажом, а также количеством пинов. Для управления подсветкой часто используют разъемы 12V-G-R-B, 5V-G-R-B или 5V-D-G. Они сильно отличаются и не имеют обратной совместимости. И вот почему.

Светодиоды бывают трех типов: одноцветные, RGB и ARGB. В первом и втором варианте это обычные диоды с одни или тремя катодами, которые управляются аналогово: 12 вольт для питания и по проводу на каждый цвет. ARGB или лента с адресным управлением работает на диодах со встроенными контроллерами.

В каждую лампочку встроен контроллер, который управляет ее яркостью и цветом по цифровому каналу. Обычно, это тип подключения 5V-D-G. Где 5V — 5 вольт, G — масса, а D — Digital Input. Тот самый DI, который передает информацию каждому контроллеру и диоду отдельно, адресно. Что умеют такие ленты:

Читайте также:  Регулятор оборотов дрели разборка

Каждая лампочка управляется самостоятельно, поэтому может показать любой из миллиона цветов независимо, а также с разной яркостью.

Обычная RGB-лента тоже принимает различные оттенки, но делает это полностью:

Это ограничивает возможности кастомизации и уже перестает пользоваться спросом как в компьютерном сегменте, так и в промышленном, где основное применение ARGB-диоды находят в бегущих строках и мультимедийных баннерах.

В материнских платах управление подсветкой работает через один разъем. Чтобы подключить к нему несколько вентиляторов, используют внешние контроллеры или разветвители.

Контроллеры, к слову, тоже питаются от разъемов блока питания SATA или Molex.

Что предлагает современный вентилятор

Самое главное — компьютер стал персональным, комфортным и теперь уже красивым. Этот процесс превращения из чудовища в красавчика можно назвать эволюцией. Ей подверглись и технические особенности, и визуальные. Вентиляторы тоже подтянулись, чтобы существовать в одном стиле с платформой.

Что касается коннекторов для подключения, то основная часть вентиляторов до сих пор доступна со всеми вариантами подключения. А вот что сильно изменилось, так это ответная часть — управление на материнской плате.

Если раньше некоторые функции получали лишь топовые бренды и модели, а иногда и вовсе, только серверный сегмент, то постепенно эволюция дошла и до самых бюджетных систем. Материнские платы адаптировали под требования пользователей, поэтому большинство из них умеет теперь не только управлять скоростью и мониторить обороты, но и создавать невероятные эффекты с помощью подсветки. Это тоже можно записать в достижения эволюции: превращение вентилятора в современное умное устройство. Интересно представить, что же будет с повелителями воздуха дальше.

Источник

Вращение кулера на 100%

Штош. Коротко проблема следующая:
Кулер на процессоре начал работать в 2 режимах:
Не крутится вообще и крутится как в последний раз(то есть на 100%) при достижении заданной температуры. Полностью отсутствует работа на «промежуточных» скоростях.

Далее чуть подробнее.
При включении пеки выдает ошибку «Cpu fan1 error» что не удивительно потому, что он не крутится. Включаем игнорировать нижний порог вращения в биосе и пк нормально работает за исключением ужасного шума т.к каждые 20-30 секунд температура поднимается — включается кулер на 100% — неистово воет на весь дом — температура падает — он отключается — температура подни. зациклено кароч.
Воткнул кулер в разъем корпусного вентилятора. В режиме PWM он так же крутит 100% либо стоит на мертво, но для корпусного вентилятора есть возможность поставить управление напряжением(DC) и здесь уже кулер работает нормально. Соответственно проблема в регуляторе оборотов на самом кулере и он решил, что с него хватит да? Это вопрос 1
Далее подключил 3pin вентилятор от корпуса в разъем cpu fan, там он молотит 100% как и его коллега ранее. Вопрос 2: моя материнка (Asus Z97-P) не может управлять cpu кулером через напряжение и там нужен обязательно 4pin кулер или можно где-то переключить управление в DC и наслаждаться тишиной, избежав похода в магазин?
Что делал: сбрасывал настройки биоса(батарейкой), откатывал на предыдущую версию, переключал все режимы работы cpu fan (standart, silent, turbo, manual отличия лишь в том на какой температуре мой маленький друг начнет косплеить карлсона на все деньги).
Как я вижу проблему в 2х словах: на кулере вышел из строя регулятор оборотов, а материнка не способна(вот тут прямо сомнения) регулировать скорость вращения cpu кулера напряжением. Идешь в магазин — новый кулер — профиг. Пишу, потому что лень идти в магазин сомневаюсь, что материнка может управлять корпусными вентиляторами напряжением, а процессорным нет, может это защита от дурака такая, а может я вообще все не правильно понял и кто-то сталкивался с подобной проблемой и сейчас напишет мне как в 10 простых шагов прийти в магазин за новым кулером к успеху.
ps по орфографии и пунктуации старался сильно не косячить, но вы все равно не ругайтесь если что

Источник

Adblock
detector