Меню

Кр142ен5 как стабилизатор тока

Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Помню в начале 90-х годов стабилизаторы КР142ЕН5А (или как их ещё называли КРЕН5А) были очень популярны: их ставили и в клоны спектрумов и в АОНы, везде где работала ТТЛ и 5-вольтовая К-МОП логика. На сегодняшний день КРЕН5А может показаться монстром в большом корпусе TO-220, с большим падением напряжения (2,5 В), относительно небольшим током (2 А). Сейчас того место которое раньше занимал КРЕН5А на плате, хватит на более мощный импульсный преобразователь. А если поставить современный линейный преобразователь аналогичный старичку, то освободим достаточно пространства. Но на тот момент интегральный линейный стабилизатор обладал несомненными преимуществами по сравнению стабилизаторами на дискретных элементах.

Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования.

Стабилизатор КР142ЕН5А цоколевка

kr142en5-tsokolevka

Раньше при использовании КР142ЕН5А часто пользовались нумерацией выводов от военного аналога 142ЕН5А в металлокерамическом корпусе 4116.4-3. Выводы обозначались так Вход – 17, Общий – 8, Выход – 2. Правильно нумеровать выводы по стандарту для корпусов КТ-28-2 (ТО-220), т.е. так Вход – 1, Общий – 2, Выход – 3.

Схема включения КР142ЕН5А

kren5a-shema

Минимальные емкости конденсаторов:

Параметр Входной С1 Выходной С2
Минимальная емкость для керамического или танталового, мкФ 2,2 1
Минимальная емкость для электролитического, мкФ 10 10

Стабилизатор КР142ЕН5А характеристики

  • Полярность напряжения — положительная;
  • Выходное напряжение — 5 В;
  • Выходной ток — 2 А;
  • Максимальное входное напряжение — 15 В;
  • Разность напряжения вход-выход — 2,5 В;
  • Мощность рассеивания (без теплоотвода) — 1,5 Вт;
  • Мощность рассеивания (с теплоотводом) — 10 Вт;
  • Точность выходного напряжения — ±0,1 В;
  • Диапазон рабочих температур — -45…+70 °C;

Модификации стабилизатора: КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Удивительно, но последняя буква в обозначении стабилизатора напряжения КР142ЕН5 определяет не только второстепенные параметра, но такой важный параметр как напряжение стабилизации: ЕН5Б и ЕН5Г стабилизируют на уровне 6В ! В то время как ЕН5А и ЕН5B – 5В. Отличия ЕН5В и ЕН5Г от ЕН5А и ЕН5Б в худшей стабильности поддержания выходного напряжения: ±4% против ±2% .

Тип
Выходное напряжение, В 4,9…5,1 5,88…6,12 4,82…5,18 5,79…6,21
Температурный коэффициент напряжений, 0,02 0,02 0,03 0,03
Максимальный выходной ток, А 2 2 1,5 1,5

Аналоги

Прототипом для отечественной разработки КР142ЕН5А был стабилизатор А7805Т фирмы «Fairchild Semiconductor». И конечно выпускалось большое количество аналогичных стабилизаторов другими фирмами. В обозначении обычно присутствует код 7805,перед ним может быть буквенное обозначение характеризующее изготовителя.

10 thoughts on “ Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г ”

По идее — стабилизатор для 5-вольтовой логики. На практике — без цепей корректировки не обойтись. Как минимум диод или низкоомный прецизионный резистор ему в «общий», иначе 133, 155, 555 серии сбоили по-черному. Это я о КР142ЕН5А. Остальные, разве что 561 и 564 серию устраивали, со стабилитроном в подпорке. Как результат, для питания логических схем, практически не использовались, а применялись (с небольшой доработкой) в простеньких блоках питания с напряжением 5-15 В, что и обуславливало их распространенность.

«Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования. » — ХА ХА ХА . Я их продолжаю использовать в схемах с 32разрядными ARM процессорами

Чего-чего? КРЕН5А без стабилитрона, диода или резистора даёт чистые 5 вольт, а с ними — завышает. Это значит (если у вас 155 и 555 серия сбоили) что у вас было большое сопротивление от КРЕН5А до потребителей, либо была убогая разводка питания к корпусам микросхем, либо и то, и то.
Стабилитрон, диод или резистор просто повышают напряжение (а стабильность, как ни странно, снижают), причём сильно повышают.
У меня никогда в жизни не сбоили серии 155 и 555 при питании от КРЕН5А безо всяких подпорок, а ведь платы бывали большими, и не только 155 и 555 на них были, практически утыкаться в ограничение по току доводилось…
Однако соглашусь с тем, что лучше КРЕН5А ставить как можно ближе к потребителю, чтобы не было между ними длинных проводов и разъёмов.

Если в обычных схемах с ТТЛ-логикой кренки работали нормально, то с процессором Z80 иногда сбоили. Изредка встречались кренки со слегка заниженным напряжением. В свое время использовал их наверное сотнями на Спектрумы…

Стабилизаторы 7805 функциональный аналог КРЕНки — топология и характеристики (кроме выходного напряжения) у них различны! — и при одинаковой нагрузке (и прочих условиях) греются они по разному. Даже 7805 от разных производителей и то совсем разные встречаются … Так что лучше переплатить за бренд, чем брать ноунейм с перекошенной маркировкой.
Непосредственно КРЕН5 90-х годов вполне сносно работают с контроллерами avr-mega, разве что греются сильнее современных 7805.

142б выдержит 25 вольт?

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье исполь

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье использовать? Кто не очень ориентируется в применении для них коротко поясню при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В. То есть запитывать крен отеч. для обеспечения минимального перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г) надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не привысит 15В. В авто это не годится, при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора, есть у них такая особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, слпротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый. Это извините хе…ня с которой просто иметь дело не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил жту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные» ). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Столько много написал не поленился потому что кому то пригодится, если прочтет мой коммент вдумчиво

Читайте также:  Проверка защиты от токов короткого замыкания

Косяк этих чипов в другом. Крен5(включая специсполнения) и стабилизаторы 7805,7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно до 25В но такое использование их это адская машина). Отсюда очень неприятные особенности при использования отечественных вариантов, неудобен подбором диапазона входных напряжений, он вообще никакой. Ниже напряжение не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к короткому замыканию между входным и общим может быть ом 15-25 на остывшем, уже вышедшем из строя. То есть за счет такого шунтирования по входу и этим подсадки напряжения почти до нуля (если схема стабилизации без дополнений типа слабых диодов в цепи общего или резисторов), всё что низковольтное за стабилизатором выживает обычно, за счет такого характера отказа не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное(перепад вход-выход макс.). И как это счастье использовать? Кто не очень ориентируется в применении на практике, для них коротко поясню: при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В(есть ограничения по области безопасной работы значение выходного тока при таком варианте до 0.5А примерно, при максимальном перепаде то есть 30-29 Вольт) . Поэтому корректно запитывать крен отечественный, для обеспечения допустимого перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г), надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не превысит 15В. В авто например это не получается в аварийном режиме бортсети(при 12В варианте), при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора(есть у них такая предусмотренная специально особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, сопротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый, для адаптера не подойдёт. Получается с таким стабилизатором иметь дело совсем не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил эту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные»). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Лучше уж использовать просто транзистор(или составной) и стабилитрон и обычную классическую схему без сюрпризов с коэффициентом стабилизации около 30 чего часто вполне достаточно, а в коллекторе транзистора плавкий резистор(«японский вариант»), или же какую то схему защиты в дополнение. Или применять импортные варианты чипа LM7805(6) и аналогичные других фирм.

Читайте также:  Автомат дифференциального тока schneider electric

Источник

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

В данной статье речь пойдет об особенностях применения интегральных стабилизаторов типа КР142ЕН5, КР142ЕН8 (и импортных аналогов типа 78xx).

Эти стабилизаторы идентичны и содержат устройства защиты от замыкания в цепи нагрузки, и от перегрева. Различаются они максимальным выходным током и номинальным выходным напряжением.

Существующее разнообразие по выходному напряжению позволяет выбрать необходимый стабилизатор, но не всегда возможно приобрести именно нужный стабилизатор.

Ниже описано несколько приемов по увеличению номинального выходного напряжения интегрального стабилизатора. В схеме на рисунке 1 выходное напряжение увеличено за счет цепи R1-R2.

Выходное напряжение Uвых= Uвых ст + Ur2, где Uвых.ст — номинальное выходное напряжение данного интергального стабилизатора, Ur2 — напряжение на резисторе R2. Сопротивления резисторов R1 и R2 находят по формулам:

R1 = Uвых.ст / (Iг1 + Iа), R2 = Uвых — Uвых ст / Ir2, где Іг1 — ток через R1, Ir2 -ток через R2. Іа — ток потерь в микросхеме. обычно равный 5-10 гmA.

Принципиальная схема интегрального стабилизатора с регулировкой напряжения

Рис. 1. Принципиальная схема интегрального стабилизатора с регулировкой напряжения.

Для нормальной работы стабилизатора ток Іг2 должен быть, как минимум, вдвое больше тока Іа. Приняв Іг2 = 20mA, в рассматриваемом случае (Uвых = 10V. Uвых.ст = 5V) получаем R1 = 5 / (0,02+0,01) = 333 Om, R2 = (10-5) / 0,02 = 250 Om.

Поскольку резисторов с такими сопротивлениями в номинальном ряде нет, выбираем R1 немного меньше (240 Om), а на роль R2 берем подстроечный резистор. Это позволит установить выходное напряжение на нужное значение.

Практически, пользуясь такой схемой (но с другими значениями сопротивлений) можно регулировать напряжение от напряжения Uвых.ст (R2=0) до 30V.

Мощность, рассеиваемая микросхемой определяется по формуле: Р = Івх (Uвх. — Uвых ) + la Uвх., где Івх -входной ток. Uвх. — входное напряжение, Uвых — выходное напряжение. Іа — ток потерь в микросхеме.

Практически, способ повышения выходного напряжения интегрального стабилизатора заключается введением в его схему дополнительного источника постоянного напряжения. Но это может быть достигнуто не только резисторами, но и применением стабилитрона. Схема такого стабилизатора показана на рисунке 2.

Схема интегрального стабилизатора с фиксированным напряжением на выходе

Рис. 2. Схема интегрального стабилизатора с фиксированным напряжением на выходе.

Здесь источником дополнительного напряжения служит параметрический стабилизатор на стабилитроне VD1, напряжение на котором стабильно и не зависит от тока в нагрузке.

Практически, выходное напряжение такого стабилизатора определяется как сумма номинального напряжения интегрального стабилизатора и напряжения стабилизации стабилитрона.

В данном случае. Uвых = 5V + 4.7V = 9.7V. Недостаток такой схемы в отсутствии возможности регулировки выходного напряжения. Коррекция выходного напряжения осуществляется путем изменения напряжения стабилизации дополнительного параметрического стабилизатора, например. включением последовательно стабилитрону диодов или светодиодов, в прямом направлении. В этом случае выходное напряжение повысится на величину падения напряжения на этом диоде.

В схеме, показанной на рисунке 1 выходное напряжение можно регулировать от минимального значения, равного напряжению стабилизации интегрального стабилизатора до какого-то верхнего значения, определенного резисторами R1 и R2.

Поскольку, выходное напряжение такого стабилизатора выражается как сумма напряжения дополнительного источника и напряжения стабилизации интегрального стабилизатора, то для получения регулировки от нуля (или получения выходного напряжения ниже чем напряжение стабилизации интегрального стабилизатора) нужно чтобы напряжение дополнительного источника было отрицательным.

Схема такого стабилизатора. с регулировкой от нуля до 10 V показана на рисунке 3. Требуемое значение устанавливают переменным резистором R2.

Когда этот резистор находится в крайне нижнем (по схеме) положении, на вывод 8 интегрального стабилизатора подается отрицательное напряжение 5V, выработанное стабилизатором R3-VD1.

Напряжение на выходе будет равно нулю (5 + (-5)) = 0. По мере перемещения движка резистора вверх, выходное напряжение будет увеличиваться.

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

Рис. 1. Принципиальная схема включения интегрального стабилизатора для регулировки напряжения от нуля Вольт до 10В.

Недостаток этой схемы в том. что требуется источник отрицательного относительного общего провода напряжения. Микросхемы типа КР142ЕН5 или ЕН8. а так же 78хх. в зависимости от типа могут отдавать в нагрузку ток до 1,5А.

Повысить значение выходного тока можно использованием совместно с микросхемой дополнительного мощного транзистора. Принципиальная схема базового варианта стабилизатора с «умощнением» показана на рисунке 4.

Принципиальная схема базового варианта стабилизатора с умощнением

Рис. 4. Принципиальная схема базового варианта стабилизатора с умощнением.

При токе нагрузки до 200 мА падение напряжения на резисторе R1 мало и транзистор закрыт, а стабилизатор работает как бы без него.

При увеличении тока нагрузки падение напряжения на R1 возрастает и достигает 0,6-0,7 V, что приводит к открыванию транзистора VТ1, ограничивающему дальнейший прирост тока через микросхему.

Микросхема поддерживает выходное напряжение на заданном уровне как и при типовом включении : при повышении выходного напряжения снижается входной ток, а следовательно и напряжения управления на базе транзистора. При уменьшении напряжения, ток, наоборот, увеличивается, что приводит к большему открыванию транзистора.

Применяя такой стабилизатор нужно знать, что минимальная разность входного и выходного напряжений должна быть равна сумме минимального падения напряжения на интегральном стабилизаторе и напряжения эмиттер-база транзистора.

Схема стабилизатора напряжения 12 Вольт с максимальным током 8 Ампер, микросхема и транзистор

Рис. 5. Схема стабилизатора напряжения 12 Вольт с максимальным током 8 Ампер, микросхема и транзистор.

На рисунке 5 приводится схема стабилизатора напряжения 12V с максимальным током 8А. В этой схеме используется защита от перегрузки транзистора.

Реализована она включением в цепь эмиттер-база транзистора кремниевых диодов VD1 и VD2 (вместо резистора в схеме на рисунке 4). Пока ток не превосходит некоторого максимального значения сопротивление через диоды относительно велико и напряжение на них достаточно для открывания транзистора.

При увеличении тока выше некоторого значения ток через диоды увеличивается, но напряжение на них не растет, поскольку они открыты. Значительная часть тока начинает перекладываться на микросхему, что приводит к увеличению тока через микросхему.

Срабатывает схема защиты от перегрузки, имеющаяся в микросхеме и стабилизатор выключается. Другой способ повышения мощности интегрального стабилизатора состоит в том, что интегральный стабилизатор выполняет роль мощного источника образцового напряжения, мощный транзисторный каскад работает как усилитель мощности постоянного тока, при этом транзистор включается по схеме эмиттерного повторителя (рис. 6).

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

Рис. 6. Схема интегрального стабилизатора напряжения с включением транзистора по схеме эмиттерного повторителя.

Читайте также:  Ток потребления usb устройств

Если обратить внимание, схема практически представляет собой классическую схему параметрического стабилизатора на транзисторе и стабилитроне, в которой функции стабилитрона выполняет интегральный стабилизатор, дающий больший ток и стабильность.

Поскольку, выходной ток интегрального стабилизатора достаточно высок, можно использовать эмиттерный повторитель, требующий такого же большого тока управления.

Для получения выходного тока в десятки и сотни ампер допускается параллельное включение нескольких транзисторов (все одноименные выводы транзисторов включаются вместе).

Транзистор КТ819А допускает ток коллектора до 10 А. если нужен стабилизатор, дающий на выходе ток, например, в 40А, потребуется параллельное включение четырех-пяти таких транзисторов.

При этом, общий ток базы составит около 1,5-2 А. Используя схему параллельного включения транзисторов важно, чтобы транзисторы были как можно более близки по параметрами, желательно чтобы они были из одной партии и с одноименной маркировкой.

Для получения двухполярного стабильного напряжения от одного однополярного интегрального стабилизатора можно использовать схему, показанную на рисунке 7.

Стабилизатор включен по типовой схеме в положительную линию напряжения. В отрицательную линию включен регулирующий транзистор VТ1.

Инвертирующий операционный усилитель сравнивает напряжение на точке соединения одинаковых резисторов R1 и R2 напряжением общего нуля и выдает сигнал ошибки, который открывает транзистор VТ1 на столько, чтобы напряжение на его эмиттере было по модулю равно напряжению на выходе интегрального стабилизатора.

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

Рис. 7. Принципиальная схема получения двухполярного стабильного напряжения от одного однополярного интегрального стабилизатора.

Если напряжение на инвертирующем входе ОУ становится больше нуля, это значит что положительное напряжение больше, что приводит к увеличению по модулю отрицательного напряжения на выходе ОУ и большему открыванию транзистора.

Если же, напряжение на инвертирующем входе меньше нуля, то происходит обратный процесс и транзистор VТ1 прикрывается, понижая по модулю отрицательное напряжение.

Андреев С. РК-04-2019.

Литература: Андреев С. Применение популярных интегральных стабилизаторов. РК-08-2005.

Источник

Стабилизатор КР142ЕН5А. Описание, характеристики и схема включения

Производимый отечественной промышленностью интегральный линейный стабилизатор КР142ЕН5А представляет собой 3-х контактный стабилизатор, имеющий на выходе постоянное и фиксированное напряжение в 5 вольт.

Область применения – в качестве источника питания для измерительной техники, логических систем, приборов высококачественного воспроизведения и прочих радио-электронных устройств. При необходимости стабилизатор КР142ЕН5А можно заменить аналогом — другим стабилизатором напряжения 7805 (78L05).

КР142ЕН5А

Основные характеристики КР142ЕН5А

  • Выходное напряжение: 5В
  • Выходной ток: 2 А
  • Максимальное входное напряжение: 15 В
  • Разность напряжения вход-выход: 2,5 В
  • Мощность рассеивания (с радиатором): 10 Вт
  • Точность выходного напряжения: 0,05 В

Максимальные значения работы КР142ЕН5А:

  • Рассеиваемая мощность: внутренне ограничена
  • Температур хранения: -55 … +150С
  • Диапазон (рабочий) температур кристалла: -45 … +125С

Особенности стабилизатора КР142ЕН5А:

  • Коррекция участка безопасной работы выходного транзистора
  • Внутренняя защита от перегрева кристалла
  • Внутренний ограничитель тока короткого замыкания

stabilizator-kr142en5a-opisanie-xarakteristiki-i-sxema-vklyucheniya-2

Типовая схема включения КР142ЕН5А

Конечно же, главное предназначение КР142ЕН5А — источник постоянного и фиксированного напряжения 5 вольт, но, несмотря на это, данный вид стабилизатора может быть применен и как простой блок питания с функцией регулировки выходного напряжения в диапазоне 5,6…13 вольт. Этого можно добиться путем добавления нескольких внешних компонентов.

Выпрямленное и нестабилизированное напряжение +15 вольт с диодного моста поступает на вход (1) стабилизатора КР142ЕН5А. На управляющий вывод (2) поступает напряжение с выхода (3) стабилизатора через транзистор VT1. Величина этого напряжения выставляется переменным резистором R2. Положение движка резистора в верхнем положении определяет минимальное значение напряжение (5,6В) на выходе регулируемого блока питания

Минимальное выходное напряжение 5,6 В формируется из стандартного выходного напряжения стабилизатора (5В) и напряжения между эмиттером и коллектором (0,6В) открытого транзистора VT1.

Емкость С2 сглаживает пульсации, а емкость С1 защищает от вероятного ВЧ возбуждения микросхемы. Ток нагрузки стабилизатора может доходить до 2 А. Для нормальной работы стабилизатора его необходимо разместить на радиаторе.

Источник



Стабилизаторы крен 142 – описание, характеристики и типовая схема

Трехвыводные стабилизаторы напряжения бывают фиксированные или регулируемые. Первые разработаны на конкретное выходное напряжение (в нашем случае 5 В). Вторые – регулируемые стабильники, которые позволяют установить необходимое напряжение в заявленных пределах.

Если вам не нужно ограничивать выходные параметры или настраивать сигнал на нестандартные параметры, то обратите внимание на стабилизатор с фиксированным напряжением КРЕН 142, который позволит использовать меньше деталей и поэтому станет лучшим выбором.

Схема КРЕН 142

Как выбрать стабилизатор по току? Устройство должно быть выбрано с номиналом, довольно близким к значению максимально возможного тока в цепи. Если стабилизатор будет слегка загружен, то со стабильностью часто бывает не всё в порядке. Однако схема должна быть подобрана оптимально и полезно во всех смыслах. То есть номинальный ток с большим запасом тоже ни к чему, поскольку ток короткого замыкания будет также слишком большим для того, чтобы защитить цепь.

Типовая схема включения КР142ен5а

Стабилизатор серии КР142ен5а с постоянным положительным напряжением на выходе в 5 В имеет широкое применение в самых различных электронных приборах. Сфера его использования – в качестве источника питания для логических систем, аппаратов высокоточного воспроизведения и других радиоэлектронных приборов. Электрическая схема КР142ЕН5А показана на рисунке ниже.

КРЕН 5в стабилизатор

Емкости С1, С2 играют корректирующую роль. С2 предназначена для сглаживания пульсации, а С1 – для защиты от вероятного высокочастотного возбуждения микросхемы. Ток нагрузки стабилизатора рассчитан до 2 А.

Если добавить в схему вспомогательные детали можно преобразовать её в источник с регулированием напряжения. При удалённом расположении КРЕН 142 (с длиной соединительных проводов один метр и более) от фильтрующих конденсаторов выпрямителя, к его входу следует присоединить конденсатор. Для регулирования напряжения на выходе используется внешний делитель. Для правильной работы устройства потребуется применение дополнительного радиатора. Эти модели являются аналогами импортных регуляторов серии 78xx.

Цоколевка и схема включения

Микросхема КР142ен5а рассчитана на максимальный ток 5 А, и она может его обеспечить. Но превышение тока грозит выходом устройства из строя. Ниже приводится вариант включения микросхемы. Разрешается производить монтаж микросхемы два раза, демонтаж один раз.

КРЕН 5в стабилизатор

Крепёж схемы к печатной плате выполняется методом распайки выводов корпуса, см. цоколевку микросхемы на рисунке.

КРЕН 5в стабилизатор

Характеристики стабилизатора

Микросхема кр142ен5а представляет собой стабилизатор компенсационного типа с регулируемым выходным напряжением положительной полярности.

  • защита от перегрева;
  • ограничение по току КЗ;
  • масса не более 1,4 г;
  • габариты 14,48х15,75 мм.

Предельные значения параметров режима эксплуатации и условий окружающей среды:

  • Температура хранения -55 … +150 С;
  • Температур кристалла в рабочем режиме -45 … +125 С.

Источник

Кр142ен5 как стабилизатор тока

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

В данной статье речь пойдет об особенностях применения интегральных стабилизаторов типа КР142ЕН5, КР142ЕН8 (и импортных аналогов типа 78xx).

Эти стабилизаторы идентичны и содержат устройства защиты от замыкания в цепи нагрузки, и от перегрева. Различаются они максимальным выходным током и номинальным выходным напряжением.

Существующее разнообразие по выходному напряжению позволяет выбрать необходимый стабилизатор, но не всегда возможно приобрести именно нужный стабилизатор.

Ниже описано несколько приемов по увеличению номинального выходного напряжения интегрального стабилизатора. В схеме на рисунке 1 выходное напряжение увеличено за счет цепи R1-R2.

Выходное напряжение Uвых= Uвых ст + Ur2, где Uвых.ст — номинальное выходное напряжение данного интергального стабилизатора, Ur2 — напряжение на резисторе R2. Сопротивления резисторов R1 и R2 находят по формулам:

R1 = Uвых.ст / (Iг1 + Iа), R2 = Uвых — Uвых ст / Ir2, где Іг1 — ток через R1, Ir2 -ток через R2. Іа — ток потерь в микросхеме. обычно равный 5-10 гmA.

Принципиальная схема интегрального стабилизатора с регулировкой напряжения

Рис. 1. Принципиальная схема интегрального стабилизатора с регулировкой напряжения.

Для нормальной работы стабилизатора ток Іг2 должен быть, как минимум, вдвое больше тока Іа. Приняв Іг2 = 20mA, в рассматриваемом случае (Uвых = 10V. Uвых.ст = 5V) получаем R1 = 5 / (0,02+0,01) = 333 Om, R2 = (10-5) / 0,02 = 250 Om.

Поскольку резисторов с такими сопротивлениями в номинальном ряде нет, выбираем R1 немного меньше (240 Om), а на роль R2 берем подстроечный резистор. Это позволит установить выходное напряжение на нужное значение.

Практически, пользуясь такой схемой (но с другими значениями сопротивлений) можно регулировать напряжение от напряжения Uвых.ст (R2=0) до 30V.

Мощность, рассеиваемая микросхемой определяется по формуле: Р = Івх (Uвх. — Uвых ) + la Uвх., где Івх -входной ток. Uвх. — входное напряжение, Uвых — выходное напряжение. Іа — ток потерь в микросхеме.

Практически, способ повышения выходного напряжения интегрального стабилизатора заключается введением в его схему дополнительного источника постоянного напряжения. Но это может быть достигнуто не только резисторами, но и применением стабилитрона. Схема такого стабилизатора показана на рисунке 2.

Схема интегрального стабилизатора с фиксированным напряжением на выходе

Рис. 2. Схема интегрального стабилизатора с фиксированным напряжением на выходе.

Здесь источником дополнительного напряжения служит параметрический стабилизатор на стабилитроне VD1, напряжение на котором стабильно и не зависит от тока в нагрузке.

Практически, выходное напряжение такого стабилизатора определяется как сумма номинального напряжения интегрального стабилизатора и напряжения стабилизации стабилитрона.

В данном случае. Uвых = 5V + 4.7V = 9.7V. Недостаток такой схемы в отсутствии возможности регулировки выходного напряжения. Коррекция выходного напряжения осуществляется путем изменения напряжения стабилизации дополнительного параметрического стабилизатора, например. включением последовательно стабилитрону диодов или светодиодов, в прямом направлении. В этом случае выходное напряжение повысится на величину падения напряжения на этом диоде.

В схеме, показанной на рисунке 1 выходное напряжение можно регулировать от минимального значения, равного напряжению стабилизации интегрального стабилизатора до какого-то верхнего значения, определенного резисторами R1 и R2.

Поскольку, выходное напряжение такого стабилизатора выражается как сумма напряжения дополнительного источника и напряжения стабилизации интегрального стабилизатора, то для получения регулировки от нуля (или получения выходного напряжения ниже чем напряжение стабилизации интегрального стабилизатора) нужно чтобы напряжение дополнительного источника было отрицательным.

Читайте также:  При параллельном соединении проводников сила тока больше в том проводнике

Схема такого стабилизатора. с регулировкой от нуля до 10 V показана на рисунке 3. Требуемое значение устанавливают переменным резистором R2.

Когда этот резистор находится в крайне нижнем (по схеме) положении, на вывод 8 интегрального стабилизатора подается отрицательное напряжение 5V, выработанное стабилизатором R3-VD1.

Напряжение на выходе будет равно нулю (5 + (-5)) = 0. По мере перемещения движка резистора вверх, выходное напряжение будет увеличиваться.

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

Рис. 1. Принципиальная схема включения интегрального стабилизатора для регулировки напряжения от нуля Вольт до 10В.

Недостаток этой схемы в том. что требуется источник отрицательного относительного общего провода напряжения. Микросхемы типа КР142ЕН5 или ЕН8. а так же 78хх. в зависимости от типа могут отдавать в нагрузку ток до 1,5А.

Повысить значение выходного тока можно использованием совместно с микросхемой дополнительного мощного транзистора. Принципиальная схема базового варианта стабилизатора с «умощнением» показана на рисунке 4.

Принципиальная схема базового варианта стабилизатора с умощнением

Рис. 4. Принципиальная схема базового варианта стабилизатора с умощнением.

При токе нагрузки до 200 мА падение напряжения на резисторе R1 мало и транзистор закрыт, а стабилизатор работает как бы без него.

При увеличении тока нагрузки падение напряжения на R1 возрастает и достигает 0,6-0,7 V, что приводит к открыванию транзистора VТ1, ограничивающему дальнейший прирост тока через микросхему.

Микросхема поддерживает выходное напряжение на заданном уровне как и при типовом включении : при повышении выходного напряжения снижается входной ток, а следовательно и напряжения управления на базе транзистора. При уменьшении напряжения, ток, наоборот, увеличивается, что приводит к большему открыванию транзистора.

Применяя такой стабилизатор нужно знать, что минимальная разность входного и выходного напряжений должна быть равна сумме минимального падения напряжения на интегральном стабилизаторе и напряжения эмиттер-база транзистора.

Схема стабилизатора напряжения 12 Вольт с максимальным током 8 Ампер, микросхема и транзистор

Рис. 5. Схема стабилизатора напряжения 12 Вольт с максимальным током 8 Ампер, микросхема и транзистор.

На рисунке 5 приводится схема стабилизатора напряжения 12V с максимальным током 8А. В этой схеме используется защита от перегрузки транзистора.

Реализована она включением в цепь эмиттер-база транзистора кремниевых диодов VD1 и VD2 (вместо резистора в схеме на рисунке 4). Пока ток не превосходит некоторого максимального значения сопротивление через диоды относительно велико и напряжение на них достаточно для открывания транзистора.

При увеличении тока выше некоторого значения ток через диоды увеличивается, но напряжение на них не растет, поскольку они открыты. Значительная часть тока начинает перекладываться на микросхему, что приводит к увеличению тока через микросхему.

Срабатывает схема защиты от перегрузки, имеющаяся в микросхеме и стабилизатор выключается. Другой способ повышения мощности интегрального стабилизатора состоит в том, что интегральный стабилизатор выполняет роль мощного источника образцового напряжения, мощный транзисторный каскад работает как усилитель мощности постоянного тока, при этом транзистор включается по схеме эмиттерного повторителя (рис. 6).

Читайте также:  Проверка защиты от токов короткого замыкания

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

Рис. 6. Схема интегрального стабилизатора напряжения с включением транзистора по схеме эмиттерного повторителя.

Если обратить внимание, схема практически представляет собой классическую схему параметрического стабилизатора на транзисторе и стабилитроне, в которой функции стабилитрона выполняет интегральный стабилизатор, дающий больший ток и стабильность.

Поскольку, выходной ток интегрального стабилизатора достаточно высок, можно использовать эмиттерный повторитель, требующий такого же большого тока управления.

Для получения выходного тока в десятки и сотни ампер допускается параллельное включение нескольких транзисторов (все одноименные выводы транзисторов включаются вместе).

Транзистор КТ819А допускает ток коллектора до 10 А. если нужен стабилизатор, дающий на выходе ток, например, в 40А, потребуется параллельное включение четырех-пяти таких транзисторов.

При этом, общий ток базы составит около 1,5-2 А. Используя схему параллельного включения транзисторов важно, чтобы транзисторы были как можно более близки по параметрами, желательно чтобы они были из одной партии и с одноименной маркировкой.

Для получения двухполярного стабильного напряжения от одного однополярного интегрального стабилизатора можно использовать схему, показанную на рисунке 7.

Стабилизатор включен по типовой схеме в положительную линию напряжения. В отрицательную линию включен регулирующий транзистор VТ1.

Инвертирующий операционный усилитель сравнивает напряжение на точке соединения одинаковых резисторов R1 и R2 напряжением общего нуля и выдает сигнал ошибки, который открывает транзистор VТ1 на столько, чтобы напряжение на его эмиттере было по модулю равно напряжению на выходе интегрального стабилизатора.

Особенности применения интегральных стабилизаторов серий КР142ЕН и 78xx

Рис. 7. Принципиальная схема получения двухполярного стабильного напряжения от одного однополярного интегрального стабилизатора.

Если напряжение на инвертирующем входе ОУ становится больше нуля, это значит что положительное напряжение больше, что приводит к увеличению по модулю отрицательного напряжения на выходе ОУ и большему открыванию транзистора.

Если же, напряжение на инвертирующем входе меньше нуля, то происходит обратный процесс и транзистор VТ1 прикрывается, понижая по модулю отрицательное напряжение.

Андреев С. РК-04-2019.

Литература: Андреев С. Применение популярных интегральных стабилизаторов. РК-08-2005.

Источник



Стабилизаторы крен 142 – описание, характеристики и типовая схема

Трехвыводные стабилизаторы напряжения бывают фиксированные или регулируемые. Первые разработаны на конкретное выходное напряжение (в нашем случае 5 В). Вторые – регулируемые стабильники, которые позволяют установить необходимое напряжение в заявленных пределах.

Если вам не нужно ограничивать выходные параметры или настраивать сигнал на нестандартные параметры, то обратите внимание на стабилизатор с фиксированным напряжением КРЕН 142, который позволит использовать меньше деталей и поэтому станет лучшим выбором.

Схема КРЕН 142

Как выбрать стабилизатор по току? Устройство должно быть выбрано с номиналом, довольно близким к значению максимально возможного тока в цепи. Если стабилизатор будет слегка загружен, то со стабильностью часто бывает не всё в порядке. Однако схема должна быть подобрана оптимально и полезно во всех смыслах. То есть номинальный ток с большим запасом тоже ни к чему, поскольку ток короткого замыкания будет также слишком большим для того, чтобы защитить цепь.

Типовая схема включения КР142ен5а

Стабилизатор серии КР142ен5а с постоянным положительным напряжением на выходе в 5 В имеет широкое применение в самых различных электронных приборах. Сфера его использования – в качестве источника питания для логических систем, аппаратов высокоточного воспроизведения и других радиоэлектронных приборов. Электрическая схема КР142ЕН5А показана на рисунке ниже.

Читайте также:  Автомат дифференциального тока schneider electric

КРЕН 5в стабилизатор

Емкости С1, С2 играют корректирующую роль. С2 предназначена для сглаживания пульсации, а С1 – для защиты от вероятного высокочастотного возбуждения микросхемы. Ток нагрузки стабилизатора рассчитан до 2 А.

Если добавить в схему вспомогательные детали можно преобразовать её в источник с регулированием напряжения. При удалённом расположении КРЕН 142 (с длиной соединительных проводов один метр и более) от фильтрующих конденсаторов выпрямителя, к его входу следует присоединить конденсатор. Для регулирования напряжения на выходе используется внешний делитель. Для правильной работы устройства потребуется применение дополнительного радиатора. Эти модели являются аналогами импортных регуляторов серии 78xx.

Цоколевка и схема включения

Микросхема КР142ен5а рассчитана на максимальный ток 5 А, и она может его обеспечить. Но превышение тока грозит выходом устройства из строя. Ниже приводится вариант включения микросхемы. Разрешается производить монтаж микросхемы два раза, демонтаж один раз.

КРЕН 5в стабилизатор

Крепёж схемы к печатной плате выполняется методом распайки выводов корпуса, см. цоколевку микросхемы на рисунке.

КРЕН 5в стабилизатор

Характеристики стабилизатора

Микросхема кр142ен5а представляет собой стабилизатор компенсационного типа с регулируемым выходным напряжением положительной полярности.

  • защита от перегрева;
  • ограничение по току КЗ;
  • масса не более 1,4 г;
  • габариты 14,48х15,75 мм.

Предельные значения параметров режима эксплуатации и условий окружающей среды:

  • Температура хранения -55 … +150 С;
  • Температур кристалла в рабочем режиме -45 … +125 С.

Источник

4.3. Стабилизатор тока

Стабилизатор тока можно легко сконструировать на базе интегрального стабилизатора напряжения. Схема такого стабилизатора приведена на рис. 4.3.

Интегральный стабилизатор с высокой точностью поддерживает напряжение на выходе. Для микросхемы КР142 ЕН5А это напряжение составляет 5 В. Если подключить к выходу микросхемы резистор, то через него будет протекать стабильный ток, величину которого определяют по закону Ома: I=U/R.

4-31.jpg

Через аккумуляторную батарею будет протекать этот же ток плюс ток собственного потребления стабилизатора. Величина тока собственного потребления интегрального стабилизатора невелика и может быть учтена путем подбора токозадающих резисторов R2 — R5. В стабилизаторе тока можно использовать любые стабилизаторы напряжения, однако предпочтение следует отдавать стабилизаторам с минимальным выходным напряжением, так как в этом случае большая часть мощности источника питания идет непосредственно на зарядку аккумулятора. Микросхема позволяет сконструировать зарядное устройство со стабилизированным током до 1,5 А, однако при этом на микросхеме будет выделяться значительная тепловая мощность и для избежания перегрева ее следует установить на радиатор достаточного размера. При необходимости можно обеспечить и другие значения зарядного тока. Для этого по формуле следует рассчитать новые номиналы резисторов R2 — R5 по заданному значению тока зарядки.

R=Ucт/lз, где R — сопротивление резистора, Ом;

Uст — напряжение стабилизации микросхемы (для КР142 ЕН5А равное 5 В);

Источник

Adblock
detector