Меню

Контроллер заряда входное напряжение

Контроллер заряда для солнечной батареи: описание и сфера применения

Контроллер заряда солнечной батареи нужен при сборке электростанции, работающей от света. Если в ветрогенераторе достаточно просто установить мощный диод, который будет предотвращать утечку тока обратно на генератор и плату защиты батареи, то в солнечных панелях потребуется более сложное устройство, способное динамически регулировать нестабильное напряжение.

Базовые понятия о работе солнечной электростанции

Любая солнечная электростанция, применяется ли она на крупном предприятии или на небольшом дачном участке, состоит из четырех основных модулей. Это непосредственно солнечные панели (монокристаллические или поликристаллические), контроллер заряда, аккумулятор и инвертор.

Схема солнечной электростанции

Работает эта схема следующим образом:

  1. Находясь под солнцем, солнечные панели вырабатывают напряжение, которое поступает на контроллер заряда. Он повышает (реже – понижает) входное напряжение до необходимых для заряда аккумулятора пределов и одновременно препятствует его разряду. Напряжение с контроллера заряда поступает на емкую аккумуляторную батарею.
  2. Использование солнечных панелей без аккумулятора нецелесообразно, так как при небольшом изменении освещенности могут возникать значительные перепады напряжения, которые устройство стабилизировать не в состоянии.

Также контроллер заряда препятствует чрезмерному разряду или перезаряду аккумулятора, что может привести к его повреждению. Если напряжение на нем упадет до критически низких значений, выход контроллера будет отключен, чтобы предотвратить глубокий разряд.

Зарядное устройство при этом продолжает работать и питание будет восстановлено, как только напряжение на аккумуляторе поднимется. При этом параллельно производится подключение инвертора, который преобразует постоянное напряжение в привычный нам переменный ток 220 вольт.

Подключать большие нагрузки к такой схеме не стоит, так как можно вызвать перегрузку инвертора или преждевременный разряд аккумулятора. Накопленный за день заряд подходит для освещения комнат, а также маломощных электроприборов, которым не страшна модифицированная синусоида.

Какие бывают контроллеры заряда

В серийном выпуске имеются два вида контроллеров заряда для солнечных панелей – PWM и MPPT. У обоих типов есть достоинства и недостатки.

Контроллеры PWM

Устройства с широтно-импульсной модуляцией, или PWM контроллеры, уже считаются устаревшими. В их основе лежит простая ШИМ, который удерживает напряжение на выходе посредством изменения скважности генерируемого им сигнала.

Обычно он снимает напряжение с выходного контура DC-DC преобразователя, тем самым поддерживая на выходе некоторое заранее определенное напряжение (чаще всего 12-14 вольт, однако встречаются модели и с другими параметрами). Импульсы поступают на высокочастотные транзисторные ключи, которые управляют питанием дросселя.

Контроллер заряда PWM

В результате на последнем возникают быстрые подъемы и спады напряжения, амплитуда которых зачастую в несколько раз превышает входные параметры. На выходе напряжение стабилизируется диодом и выравнивается конденсатором.

К преимуществам PWM можно отнести:

  • их стоимость;
  • высокую надежность;
  • простоту конструкции.

К сожалению, при их работе часть мощности рассеивается, что снижает КПД.

Контроллеры МРРТ

Принцип работы MPPT практически ничем не отличается от PWM за исключением того, что генерацию импульсов для работы преобразователя выполняет не широтно-импульсный модулятор, а небольшой компьютер, имеющий собственные процессор и память. Он постоянно контролирует напряжение и силу тока как на входе, так и на выходе преобразователя, а также температуру внутренних радиоэлементов.

Благодаря этому достигается максимальная производительность работы солнечных панелей, практически без потерь на рассеивание тепла. Все параметры задаются микропрограммой контроллера.

Аппарат типа МРРТ подходит крупных предприятий и промышленных электростанций, благодаря:

  • высокой производительности;
  • быстрой окупаемости.

Однако его стоимость значительно превышает цену аналогов с ШИМ.

Поиск прибора

Как выбрать контроллер заряда для солнечной батареи для ежедневной эксплуатации? Прежде всего решите, какие источники альтернативной энергии вы будете задействовать. При использовании одновременно как солнечных панелей, так и ветрогенератора, вам понравится гибридный, который позволяет либо задействовать их одновременно, чтобы обеспечить зарядку аккумулятора, либо попеременно.

Подберите себе оптимальное рабочее напряжение для работы вашего оборудования. В качестве накопителя может быть использована свинцово-кислотная аккумуляторная батарея на 12 вольт и 60 ампер-часов из автомобиля. Найти контроллер на это напряжение будет проще всего ввиду их распространенности.

К сожалению, большинство инверторов требует напряжения 24 вольта и выше, что делает невозможным их использование с одним аккумулятором. В этом случае вам придется дополнительно покупать балансир, чтобы обеспечить равномерный износ двух батарей и контроллер подороже, работающий с более высоким напряжением (или два контроллера, запитанных от независимых источников тока, – например, от разных солнечных панелей).

Себе можно приобрести PWM контроллер для солнечной батареи. Он не очень дорогой, а небольшая разница в КПД практически не отразится на скромном хозяйстве. Зато благодаря высокой надежности вы покупаете его раз и навсегда. PWM контроллеры не требуют настройки и дополнительного обслуживания во время эксплуатации.

Где купить

Купить контроллер заряда можно на алиэкспрессе. Там предлагается большой выбор устройств, как PWM, так и MPPT. Также ознакомьтесь с обзорами на ту или иную продукцию от реальных покупателей.

Цена популярных контроллеров заряда на алиэкспрессе начинается от 1000 рублей.

Более дешевые варианты вы можете поискать на радиорынках. Обратите внимание: когда вы покупаете товар с рук, убедитесь, что в комплекте идет инструкция или на приборе наглядно обозначено, как его подключать.

Выбирать его нужно аккуратно, в противном случае существует риск приобрести некачественный прибор.

Покупать подержанные устройства не рекомендуется, особенно МРРТ. Связанно это с тем, что интегральные схемы от постоянной работы постепенно деградируют. В них могут возникать как механические повреждения от перепадов температуры, так и внутрислойные короткие замыкания, из-за чего внешне рабочее устройство будет работать нестабильно.

Контроллер заряда своими руками

Изготовить простой контроллер заряда своими руками можно, использовав минимум радиоэлементов. При изготовлении этого устройства от вас потребуются определенные навыки в работе с паяльником и изготовлении монтажных плат.

В интернете можно найти массу схем. Например, здесь: https://poluchi-teplo.ru/soln/izgotovlenie-kontrollera-dlya-solnechnoy-paneli.html есть несколько интересных идей, о том, как реализовать прибор, который может проверять заряд батареи и при необходимости включать зарядное устройство.

Схема контроллера Майкла Дэвиса

Из-за того, что данный контроллер заряда солнечной батареи прост, схема устройства выполняет только самые базовые функции и не может повышать напряжение для зарядки в условиях низкой освещенности.

Также можно изготовить самодельный балансир, который позволит одновременно задействовать несколько источников альтернативной энергии – например, ветрогенератор и солнечные панели. Сделать его можно так: http://e-veterok.ru/kontroller-dlya-solnehnoy-paneli.php.

Можно изготовить прибор на платформе Ардуин, однако это потребует от вас не только навыков в радиомонтаже, но и умения программировать на ассемблере и машинных кодах.

Если вы не уверены в своих силах, можно прибегнуть к готовой схеме, однако учтите, что она значительно сложнее аналогов и требует изготовления печатной платы для монтажа микроконтроллера. Подробно процесс изготовления описан здесь: http://robocraft.ru/blog/3413.html.

Схема контроллера заряда от солнечной батареи

Собрать надежный солнечный генератор просто, если покупать надежные и популярные элементы. Правильно собранное и надежное устройство при домашнем использовании полностью окупится за 2-3 года, а на предприятии – еще быстрее.

Источник



Как подобрать контроллер заряда солнечных батарей.

При выборе контроллера заряда для солнечных батарей большинство задается вопросом, как выбрать контроллер заряда солнечных батарей.

7 с полоской.jpg

Выбор контроллера заряда солнечных батарей следует разделить на несколько аспектов:

  1. Подбор по мощности массива солнечных батарей;
  2. Подбор по напряжению используемых солнечных батарей и акб;
  3. Подбор по максимальной нагрузке или зарядному току акб, количеству акб;
  4. Подбор по типу АКБ;
  5. Подбор по необходимым функциям;
  6. Подбор по типу регулировки и преобразования напряжения;
  7. Подбор по стоимости;
  8. Выбор производителя.
Читайте также:  Цитиколин при головных болях напряжения

Подбор по мощности массива солнечных батарей

8 с полоской.jpg

Основной параметр контроллера солнечного заряда это рабочее напряжение и максимальная сила тока, с которой может работать контроллер заряда. Очень важно знать такие параметры солнечных батарей, как:

Номинальное напряжение – рабочее напряжение контура солнечных батарей, замкнутого на нагрузку, т.е. на контроллер;

Напряжение открытого контура – максимальное достигаемое напряжение контура солнечных батарей, не подключенного к нагрузке. Также же это напряжение называется напряжением холостого хода. При подключении к контроллеру солнечных батарей, контроллер должен выдерживать данное напряжение.

Максимальная сила входного тока от солнечных батарей, сила тока контура солнечных батарей в режиме короткого замыкания. Этот параметр достаточно редко указывается в характеристиках контроллера. Для этого необходимо узнать номинал предохранителя в контроллере и посчитать величину тока короткого замыкания солнечных модулей в контуре. Для солнечных батарей ток короткого замыкания обычно всегда указан. Ток короткого замыкания всегда выше максимального рабочего тока.

Номинальный рабочий ток. Ток подключенного контура солнечных батарей, который вырабатывается солнечными батареями при нормальных условиях эксплуатации. Данный ток обычно ниже указанного тока в характеристиках для контроллера, так как производители, как всегда, указывают максимальную силу тока контроллера.

Номинальная мощность подключаемых солнечных батарей. Данная мощность представляет произведение рабочего напряжения на рабочий ток солнечных батарей. Мощность солнечных батарей, подключенных к контроллеру должна быть равна указанной или меньше, но никак не больше. При превышении мощности, контроллер при отсутствии предохранителей может сгореть. Хотя большинство контроллеров, естественно, имеют предохранители, рассчитанные на перегрузку в 10-20% в течение 5-10 минут.

Подбор контроллера по напряжению и току солнечных батарей и акб

Большинство выпускаемых солнечных батарей имеет номинальное напряжение 12 или 24 вольта. Это сделано для того чтобы можно было заряжать аккумуляторные батареи без дополнительного преобразования напряжения. Аккумуляторные батареи появились значительно раньше солнечных батарей и имеют распространённый стандарт номинального напряжения на 12 или 24 вольта. Соответственно большинство контроллеров для солнечных батарей выпускается с номинальным рабочим напряжением равным 12 или 24 вольта, а также двухдиапазонные на 12 и 24 вольта с автоматическим распознаванием и переключением напряжения.

9 с полоской.jpg

Номинальное напряжение на 12 и 24 вольта достаточно низкое для мощных систем. Для получения необходимой мощности приходится увеличивать количество солнечных батарей и аккумуляторов, соединяя их в параллельные контуры и значительно увеличивая силу тока. Увеличение силы тока ведет к нагреву кабеля и электрическим потерям. Необходимо увеличивать толщину кабеля, возрастает расход металла. Также необходимы мощные контроллеры, рассчитанные на высокий ток, такие контроллеры получаются очень дорогими.

Чтобы исключить возрастание тока, контроллеры для мощных систем делают для номинально рабочего напряжения на 36, 48 и 60 Вольт. Стоит заметить, что напряжение контроллеров кратно по напряжению 12 вольтам, для того чтобы можно было подключать солнечные батареи и акб в последовательные сборки. Контроллеры с кратным напряжением выпускаются только для технологии зарядки ШИМ.

10 с полоской.jpg

Как видно ШИМ контроллеры выбираются с напряжением кратным 12 вольтам, причем в них входное номинальное напряжение от солнечных батарей и номинальное напряжение контура подключенных аккумуляторов должно быть одинаковым, т.е. 12В от СБ – 12В к АКБ, 24В на 24, 48В на 48В.

У контроллеров MPPT входное напряжение может быть равным или произвольно выше в несколько раз без кратности 12 Вольтам. Обычно MPPT контроллеры имеют входное напряжение от солнечных батарей от 50 Вольт для простых моделей и до 250 вольт для мощных контроллеров. Но следует учесть, что опять же производители указывают максимальное входное напряжение, и при последовательном подключении солнечных батарей следует складывать их максимальное напряжение, или напряжение холостого хода. Проще говоря: входное максимальное напряжение любое от 50 до 250В, в зависимости от модели, номинальное или минимальное входное при этом будет 12, 24, 36 или 48В. При этом выходное напряжение для заряда АКБ у контроллеров MPPT стандартное, часто с автоматическим определением и поддержкой напряжений на 12, 24, 36 и 48 Вольта, иногда 60 или 96 вольт.

11 с полоской.jpg

Существуют серийные промышленные очень мощные MPPT контроллеры с входным напряжением от солнечных батарей на 600В, 800В и даже 2000В. Данные контроллеры также можно свободно приобрести у российских поставщиков оборудования.

Окромя выбора контроллера по рабочему напряжению, контроллеры следует выбирать по максимальному входному току от солнечных батарей и максимальному току заряда акб.

Для ШИМ контроллера, максимальный входной ток от солнечных батарей будет переходить в зарядный ток АКБ, т.е. контроллер не будет заряжать большим током, чем выдают подключенные к нему солнечные батареи.

В MPPT контроллере все иначе, входной ток от солнечных батарей и выходной ток для заряда акб – это разные параметры. Эти токи могут быть равными, если номинальное напряжение подключенных солнечных батарей равно номинальному напряжению подключенных акб, но тогда теряется суть преобразования MPPT, и эффективность контроллера уменьшается. В MPPT контроллерах номинальное входное напряжение от солнечных батарей должно быть выше номинального напряжения подключенных АКБ оптимально в 2-3 раза. Если входное напряжение выше ниже чем в 2 раза, к примеру, в 1,5 раза, то будет меньшая эффективность, а выше более чем в 3 раза, то будут большие потери на разницу преобразования напряжения.

Соответственно входной ток всегда будет равен или ниже максимальному выходному току заряда АКБ. Отсюда следует, что MPPT контроллеры необходимо выбирать по максимальному зарядному току АКБ. Но чтобы не превысить данный ток, указывается максимальная мощность подключаемых солнечных батарей, при номинальном напряжении контура подключенных АКБ. Пример для контроллера заряда MPPT на 60 Ампер:

800Вт при напряжении АКБ электростанции 12В;

1600Вт при напряжении АКБ электростанции 24В;

2400Вт при напряжении АКБ электростанции 36В;

3200Вт при напряжении АКБ электростанции 48В.

Следует заметить, что данная мощность при 12 вольт указана для зарядного напряжения от солнечных панелей в 13 — 14 Вольт, и кратна для остальных систем с напряжениями на 24, 36 и 48вольт.

Подбор контроллера по максимальной нагрузке, зарядному току акб и по количеству акб

12 с полоской.jpg

Одним из важных аспектов выбора контроллера является максимальная выходная мощность контроллера, которая должна учитываться как со стороны контроллера, так и со стороны акб. Рассмотрим почему.

Допустим, имеем комплект акб большой емкости. Соответственно чтобы зарядить данные акб в течение дня, контроллер должен выдавать необходимую мощность, ну и мощность подключенных солнечных батарей должна быть, естественно, не меньшей. Если мощность контроллера и массива солнечных батарей будет меньше, то акб не успеют зарядиться в течение дня, и при постоянной нагрузке разрядятся еще больше, и так каждый раз, что скажется на их последующем ресурсе.

Если подключенные акб к солнечному контроллеру имеют маленькую емкость. Для современных контроллеров эта проблема уже не актуальна, но стоит рассмотреть такой вариант. На старых или простых контроллерах очень важно было подобрать контроллер, мощность которого с равной мощностью солнечных батарей позволят в течение дня зарядить акб, разряженный за ночь, и обеспечить питанием дневные электрические нагрузки. Для аккумуляторных батарей максимальный зарядный ток не должен превышать 30% от номинала емкости, если акб имеет емкость 100АЧ, то зарядный ток не должен превышать 30 Ампер. Если же мощность солнечной системы была бы избыточна, то контроллер продолжал бы заряжать акб даже после полного их заряда, не опуская зарядный ток и напряжение, что приводило к закипанию электролита, его кипению, вскипанию и порче аккумулятора. Современные контроллеры имеют встроенный компьютер, который следит за параметрами акб, имеет программу заряда, управляемые реле отключения, а также может регулировать ток и напряжение заряда.

Читайте также:  Нормальное напряжение аккумулятора автомобиля при езде

Подбор контроллера по типу АКБ

Различные по типу АКБ необходимо заряжать по различным программам зарядки. Это связано с различным химическим составом аккумуляторов. Программы зарядки имеют разные алгоритмы заряда. В соответствии с выбранной программой зарядки акб контроллер заряда регулирует напряжение и силу тока в установленном диапазоне. Современные контроллеры заряжают контроллеры по технологии широтно-импульсной модуляции, такие контроллеры называются ШИМ(PWM) контроллеры. Причем более дорогие контроллеры, которые называются MPPT, использующие технологию поиска точки максимальной мощности от массива солнечных батарей тоже заряжают аккумуляторы по технологии ШИМ. Сначала MPPT контроллер отбирает максимальную мощность, а далее используя ШИМ преобразователь, заряжает акб в соответствии с установленной программой зарядки.

13 с полоской.jpg

В зависимости от имеющихся аккумуляторов, необходимо выбрать контроллер, имеющий программу заряда именно для вашего типа акб. Рассмотрим основные типы АКБ и условия их заряда:

1) Свинцово-кислотные с жидким электролитом. Заряжаются обычно напряжением не выше 14-15 вольт, можно и выше до 17 вольт, но электролит быстро закипит и начнется процесс его выкипания и разрушения пластин, поэтому придется безотрывно следить за процессом заряда и при начале образования пузырьков, все равно опустить напряжение до 14 вольт, или отключить заряд и дать остыть аккумулятору. Также такие аккумуляторы при заряде выделяют взрывоопасный газ, поэтому их необходимо заряжать с открытыми клапанами и в хорошо вентилируемом помещении.

2) Свинцово-кислотные герметичные с загущенным или абсорбированным электролитом. Это аккумуляторы, изготовленные по технологии GEL и AGM. Данные аккумуляторы необходимо заряжать напряжением не выше 14 вольт. Это связано с тем, что если начнется процесс нагрева, загущенного или абсорбированного электролита, то структура электролита начнет разрушаться, и потеряет свои свойства, причем в отличии от жидко-кислотных, электролит невозможно поменять или восстановить.

3) Щелочные АКБ. Требуют заряд напряжением от 10В до 17В, необходимо следить за процессом заряда.

5) Литиевые, имеют в составе специальный блок управления зарядом.

Простые контроллеры заряда имеют одну или две программы зарядки для свинцово-кислотных акб для негерметичных жидкостных и для герметичных GEL или AGM аккумуляторов.

Подбор контроллера заряда по необходимым функциям

В современном мире в стремлении увеличения эффективности, автономности и оперативности информационного контроля к контроллерам заряда от солнечных батарей также применяются требования к обеспечению различными функциями, в зависимости от места применения контроллера.

Наиболее востребованными функциями необходимыми в контроллере заряда являются:

Автоопределение номинального напряжения солнечных батарей и акб 12В/24В/36В/48В и др.

Наличие дисплея для отображения показаний и удобства настройки;

Возможность вручную устанавливать параметры работы контроллера;

Наличие коммуникационных портов для подключения внешнего дисплея или компьютера, с учетом удаленного доступа. Такие порты, как RS232, USB, Ethernet интерфейсы для связи с другими устройствами;

Поддержка различных типов аккумуляторов;

Встроенные защиты: перегрузка, перезаряд, короткое замыкание;

Комплексная самодиагностика и электронная защита может предотвратить ущерб от неправильной установки или системных ошибок;

Внешние датчики температуры, тока и др.;

Реле управления другими устройствами;

Встроенные таймеры на отключения нагрузки;

Электронный журнал параметров работы контроллера.

Солнечный контроллер заряда необходимо выбирать с учетом требуемых функций.

6. Выбор контроллера по типу регулировки напряжения и тока. ШИМ и MPPT.

По регулировке тока и напряжения современные контроллеры можно разделить на два основных типа ШИМ и MPPT.

Подбор по стоимости

Важным критерием выбора контроллера является стоимость контроллера. При возникновении вопроса, какой контроллер купить, дороже или дешевле, в случаях небольших солнечных электростанций возникает решение, купить контроллер проще и дешевле, а на разницу в цене купить еще одну две солнечные батареи.

Если вы хотите установить простую автономную электростанцию на солнечных батареях, то стоит выбрать недорогой, но качественный ШИМ контроллер, с запасом по мощности в 20-30%.

Если же вы очень критично относитесь к установке электростанции, вам важно все параметры станции, высокая эффективность, контроль параметров, возможности удаленного управления, а также переключение между электростанцией и электросетью, или автоматическое включение генератора, то стоит приобрести продвинутый, современный, MPPT контроллер, с множеством функций, встроенных защит, возможностью управления внешними устройствами и перераспределением нагрузок.

Выбор производителя

Не маловажным аспектом является выбор производителя контроллеров. При выборе производителя контроллеров следует учитывать следующие факторы:

1) Специализации производителя. Что выпускает данное предприятие. Специализируется ли оно на производстве компонентов автономных электростанций, или контроллер является дополнительно выпускаемым среди прочей разнообразной несерьезной электроники. Бывает еще, что профильное по электрическим и электронным приборам предприятие решило выпускать дополнительно контроллер заряда солнечных батарей, и хотя они имеют серьезный подход, хорошую компонентную базу, но часто их устройства могут быть непродуманными, иметь мало функций. Это связано с тем, что для выпуска контроллера не открывался специальный отдел, который бы занимался проработкой изделия, испытаниями, доработкой, сопровождением и поддержкой контроллера в эксплуатации. Скорее всего, предприятие приобрело патент на изготовление контроллера у сторонней фирмы для загрузки незадействованных мощностей. Причем данный контроллер будет устаревшим, прошлого поколения вряд ли кто будет продавать патент на совершенно новое технологичное перспективное устройство.

2) Страна производства. Если для вас важно, контроллеры можно выбрать по стране производства. Основное разделение идет на:

Европейские. Наиболее качественные продуманные и дорогие.

Американские. Аналогично европейским.

Российские. Рынок наших контроллеров только развивается. Но уже есть достаточно продуманные контроллеры, способные составить конкуренцию европейским контроллерам. Одним из плюсов является возможность гарантийного ремонта или замены в небольшие сроки.

Китайские. Такие контроллеры можно разделить на две категории:

1) От брендовых производителей, специализирующихся на выпуске именно компонентах солнечных электростанций.

2 ) Прочие китайские производители неизвестных марок. Такие контроллеры отличает невысокая цена, некачественное исполнение, отсутствие каких-либо инструкций, гарантий и поддержки производителя.

Источник

Контроллеры заряда для солнечных батарей

Сегодня альтернативные источники энергии становятся популярнее, так как они экологически чистые, дешевые и практичные. Наиболее распространенным альтернативным энергетическим ресурсом выступает солнечная батарея. Для ее монтажа требуется приложить достаточно много усилий. В устройство солнечной батареи всегда входят контроллеры заряда, аккумуляторы, инверторы и предохранители. Собрать контроллер заряда солнечной батареи можно своими руками, чтобы сэкономить приличное количество денежных средств.

Примерно так выглядит стандартный измеритель уровня заряда для солнечной батареи.

Основное назначение

Контроллер заряда аккумуляторной батареи (АКБ) от солнечной батареи предназначен для поддержания уровня заряда аккумуляторов, который также не допускает их полную разрядку или перезарядку. К таким устройствам обычно подключают свинцовые аккумуляторы из-за своей распространенности, однако, возможно подключение других разновидностей. Контроллер для солнечных батарей выполняет большое количество функций, благодаря которым обеспечивается надежная и эффективная работа. Основными из них являются:

  • выбор наиболее эффективной системы заряда аккумулятора;
  • мониторинг заряженности батареи;
  • автоматическое включение и выключение;
  • грамотное распределение энергии;
  • защита от перенапряжения и разрыва цепи.

Разновидности

На сегодняшний день существует несколько типов контроллеров заряда. Рассмотрим некоторые из них.

MPPT-контроллер

Данная аббревиатура расшифровывается как Maximum Power Point Tracking, то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора. При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию. Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.

  • Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
  • Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
  • Данный контроллер может работать с нестандартным напряжением, например, 28 В.
  • Коэффициент полезного действия MPPT-контроллеров достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
  • Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
  • Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
  • В основном все модели MPPT-контроллеров способны функционировать при температурах от -40 до 60 градусов.
  • Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
  • Некоторые модели имеют возможность одновременно работать с гибридным инвертором.
Читайте также:  Что такое магнитное напряжение внутри катушки

Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.

PWM-контроллер

Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.

  • Напряжение на входе не более 140 В.
  • Работают с солнечными батареями на 12 и 24 В.
  • КПД практически равен 100%.
  • Возможность работы с множеством аккумуляторов различного типа.
  • Максимальное значение тока на входе достигает 60 А.
  • Температура функционирования от –25 до 55 ºC.
  • Возможность зарядить АКБ с нуля.

Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.

MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.

Если выбрать контроллер, который не будет соответствовать требованиям, то в лучшем случае он просто выйдет из строя, а в худшем может испортиться проводка в доме.

Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны, так как их цена начинается от 800 рублей. Есть модели за 10 тысяч, когда стоимость MPPT-контроллера примерно равна 25 тысячам.

Где устанавливается

Подключается контроллер между аккумулятором и панелью солнечных батарей. Однако, в схему подключения обязательно должен входить инвертор для солнечной батареи. Инвертор используется для преобразования постоянного 12 В тока, который идет от солнечной батареи, в переменный 220 В, текущий в любой розетке в доме, монтируется после аккумуляторной батареи.

Также важно наличие предохранителя, который выполняет защитную функцию от различных перегрузок и замыканий. Поэтому, для того чтобы обезопасить свой дом, необходимо произвести монтаж предохранителя. При наличии большого количества солнечных панелей желательна установка предохранителей между каждым элементом схемы.

На рисунке ниже показано, как выглядит инвертор (черная коробка):

Стандартная схема подключения выглядит примерно так, как представлена на рисунке ниже.

Схема показывает, что солнечные панели соединены с контроллером, электрическая энергия поступает в контроллер, а затем накапливается в аккумуляторе. Из аккумулятора она снова идет в контроллер, а после поступает в инвертор. А уже после инвертора идет распределение на потребление.

Как осуществить подключение самостоятельно

Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

Более подробная схема представлена ниже.

Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый.

Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

Что будет, если не производить установку

Если не установить контроллеры MPPT или PWM для солнечных батарей, то потребуется самостоятельный контроль за уровнем напряжения на батареях. Осуществить это можно с помощью вольтметра, как показано на рисунке ниже.

Однако, при таком подключении уровень заряда аккумулятора не будет фиксироваться, в результате чего он может перегореть и выйти из строя. Данный способ подключения возможен при подключении небольших солнечных панелей для питания устройств мощностью не более 0,1 кВт. Для панелей, которые будут питать целый дом, монтаж без контроллера не рекомендуется, так как оборудование выйдет из строя намного раньше. Также из-за перезарядки аккумулятора могут выйти из строя: инвертор, так как он не будет справляться с таким напряжением, может от этого сгореть проводка и так далее. Поэтому следует проводить правильный монтаж, учитывать все факторы.

Контроллер заряда своими руками

При наличии опыта в работе с электротехническим оборудованием создать контроллер для заряда солнечной батареи можно самостоятельно. На картинке ниже представлена самая простая схема такого устройства.

Рассмотрим принцип работы такой схемы. Фотоэлемент LDR или фоторезистор — прибор, который меняет свое сопротивление при попадании на него света, то есть это солнечная панель. Управляется с помощью транзисторов. Во время облучения солнцем транзисторы закрыты. Ток передается от панели к аккумулятору через диод D2, нужен он здесь для того, чтобы ток не потек в другую сторону. При полной зарядке стабилизатор ZD отсылает сигнал лампе LED red, которая зажигается красным светом, и зарядка прекращается. Когда напряжение на аккумуляторе уменьшается, стабилизатор выключается, и происходит зарядка. Резисторы необходимы для того, чтобы уменьшить силу тока, чтобы элементы не вышли из строя. На схеме также указан трансформатор, от которого тоже может происходить зарядка, принцип тот же. По данной ветке начинает течь ток в темное время суток или в пасмурную погоду.

Заключение

В итоге можно сказать, что самостоятельная установка контроллера заряда солнечной батареи несложна. Также при наличии должного опыта в монтаже электронных приборов можно осуществить самостоятельное создание контроллера для заряда солнечной батареи.

Источник

Adblock
detector