Меню

Характеристики изоляторов высокого напряжения

Изоляторы высокого напряжения. Назначение, типы и характеристики изоляторов.

Изоляторы предназначены для крепления токопроводов, а также для создания изоляционных промежутков между токопроводами различных фаз и между токопроводами и заземленными конструкциями. По назначению изоляторы подразделяются на станционные, линейные и аппаратные.

Станционные изоляторы предназначены для закрепления токопроводов в закрытых распределительных устройствах, а также для пропуска их через стены и перекрытия. Они соответственно подразделяются на опорные и проходные.

Линейные изоляторы предназначены для закрепления проводов на ВЛ и ОРУ. Они подразделяются на штыревые, стержневые и подвесные.

Изоляторы высоковольтной аппаратуры, опорные и проходные, являются неотъемлемой частью аппаратуры и по конструктивному исполнению могут быть разной формы.

Диэлектрические материалы, из которых изготавливаются изоляторы, должны иметь высокую электрическую и механическую прочность. Эти характеристики должны обеспечиваться как в нормальных условиях эксплуатации, так и в аварийных режимах, при различных атмосферных условиях, быть негигроскопичными, трекингостойкими, работать в широком диапазоне температур и в агрессивной среде.

Всем этим требованиям удовлетворяют следующие материалы: глазурированный электротехнический фарфор, стекло и некоторые пластмассы.

Фарфор обладает следующими характеристиками: электрическая прочность ; механическая прочность фарфора зависит от характера деформации , , ;

допустимый перепад рабочих температур 70ºC. Одно из достоинств фарфора как изоляции – низкая стоимость.

Стекло имеет электрическую прочность . Механические характеристики стекла примерно такие же, как у фарфора. Закаленное стекло допускает нагрузку до 530 кН. Стеклянные изоляторы могут изготавливаться методом штамповки и не требуют глазуровки. Прозрачность стекла позволяет легко обнаруживать трещины и другие дефекты, что облегчает контроль во время производства и эксплуатации.

Общий недостаток фарфоровых и стеклянных изоляторов – значительная масса и размеры.

В настоящее время широкое распространение получили изоляторы на основе стеклопластиков и полимерных покрытий. Полимерные изоляторы практически не повреждаются при транспортировке и имеют значительно меньшую (в 7–10 раз) металлоемкость подвесок, меньшую массу и размеры.

Металлическую арматуру изоляторов изготавливают из стали, ковкого и немагнитного чугунов или цветного металла. Немагнитный чугун и цветной металл применяются при больших токах с целью снижения потерь. Для крепления арматуры к диэлектрику используют высококачественные цементы и другие связующие.

Рис. 2.1 – Опорные изоляторы

Для изготовления изоляторов высоковольтной аппаратуры используется также эпоксидная смола, бакелизированная бумага и слоистые пластики. В высоковольтных вводах применяют бумажномасляную и маслобарьерную изоляцию, защищенную фарфоровыми покрышками.

Под воздействием токов короткого замыкания, ветра, гололеда и веса проводов высоковольтная изоляция испытывает большие механические нагрузки и вибрации. Кроме того изоляция ВЛ и ОРУ подвержена воздействию тумана, дождя, загрязнению и резким колебаниям температуры. Поэтому изоляционные материалы должны обеспечивать длительную электрическую прочность с учетом климатических условий и уровня перенапряжений, а также достаточную механическую прочность.

Для обеспечения надежной и безопасной работы изоляция подвергается испытанию повышенным напряжением. Значения испытательных напряжений для изоляции разных классов напряжения приводятся в таблицах. Для изоляторов внутренней установки определяющим является сухоразрядное напряжение , а для изоляторов наружной установки – мокроразрядное – напряжение перекрытия под дождем.

Читайте также:  Как проверить напряжение тэна мультиметром

Источник



Основные характеристики изоляторов

Основные характеристики изоляторовИзоляторы должны обладать определенными электрическими характеристиками . К ним относятся: сухоразрядное, мокроразрядное и пробивное напряжения.

Сухоразрядным называется напряжение, приложенное к металлическим электродам изолятора, при котором наступает искровой разряд по его поверхности при нормальных атмосферных условиях.

Мокроразрядным называется напряжение, приложенное к изолятору, при котором происходит разряд по поверхности изолятора, находящегося под действием струй дождя, падающих на него под углом 45° (рис. 1). При этом сила дождя должна быть равной 5 мм/мин, а удельное объемное сопротивление воды должно находиться в пределах 9500 — 10 500 ом х см (при 20°С).

Испытание штыревого изолятора с целью определения мокроразрядного напряжения

Рис. 1. Испытание штыревого изолятора с целью определения мокроразрядного напряжения: 1 — провод, 2 — изолятор, 3 — стальной штырь, А — Б — В — Г — Д — Е — путь электрического разряда

Величина мокроразрядного напряжения изолятора, определяемая при испытаниях, позволяет судить о том, как будет вести себя изолятор в условиях эксплуатации под дождем. Для любого изолятора величина мокроразрядного напряжения всегда меньше величины его сухоразрядного напряжения, так как при действии дождя значительная часть поверхности изолятора оказывается смоченной водой и начинает проводить ток.

Пробивным напряжением изолятора называют напряжение, при котором происходит пробой материала изолятора, заключенного между основными электродами, например между стержнем и шапкой подвесного изолятора.

Пробивное напряжение любого изолятора всегда больше его сухоразрядного и тем более мокроразрядного напряжения.

Кроме электрических характеристик, у изоляторов определяют механические характеристики . Они представляют собой механические нагрузки, измеряемые при испытании изоляторов на разрыв, изгиб и срез головки (у штыревых изоляторов).

Так, для определения разрушающей нагрузки проходного изолятора (рис. 2) он жестко крепится фланцем на стальной плите (с помощью болтов). На токоведущий стержень изолятора надевается петля из стального троса, к которому прикладывается изгибающее усилие. Это усилие плавно повышают до величины, при которой наступает разрушение изолятора.

Механическое испытание проходного изолятора

Рис. 2. Механическое испытание проходного изолятора: 1 — стальная плита, 2 — крепящие болты, 3 — чугунный фланец, 4 — фарфоровый элемент изолятора, 5 — токоведущий стержень, 6 — стальной трос, 7 — колпак

Числовые значения электрических и механических характеристик изоляторов устанавливаются соответствующими ГОСТами.

Очень важной характеристикой изоляторов является их термостойкость , т. е. стойкость к резким изменениям температуры. Эта характеристика определяется двукратным нагревом и охлаждением изолятора и воде при разности температур горячей и холодной воды 70°С (для фарфоровых изоляторов) и 50°С (для стеклянных изоляторов).

После этих теплосмен изоляторы должны еще выдержать без повреждений трехминутное испытание электрическим напряжением, при котором на поверхности изолятора образуется непрерывный поток искр.

Наиболее ответственные по своему назначению подвесные изоляторы подвергают трехкратному циклу охлаждения и нагрева при температуре от — 60 до +50°С с одновременным приложением механической нагрузки, равной 3000 — 4500 кГ и более в зависимости от типа изолятора. Это испытания на термомеханическую прочность, которые заканчиваются электромеханическими испытаниями.

Читайте также:  Звуковой эффект электрическое напряжение

Каждый цикл испытания начинается с охлаждения изоляторов до — 60°С. При этой температуре изоляторы выдерживают один час, затем начинается нагревание изоляторов до 50° С и снова их выдерживают один час. После каждого цикла теплосмен изоляторы проверяют напряжением 45 — 51 кв при температуре 20±5°С.

Испытание заканчивается плавным подъемом растягивающей механической нагрузки после третьего цикла, когда изоляторы нагреты до 50° С.

Все описанные испытания изоляторов являются типовыми, т. е. испытаниям подвергают не каждый выпускаемый с завода изолятор, а определенный процент (0,5%) от всей выпускаемой партии изоляторов.

Гирлянда изоляторов

Каждый же из выпускаемых высоковольтных изоляторов подвергается трехминутному испытанию напряжением, при котором по поверхности изоляторов образуется поток искр. Все изоляторы, выдержавшие это электрическое испытание, считаются годными.

Все выпускаемые подвесные изоляторы подвергают еще одноминутному испытанию растягивающей механической нагрузкой. Одноминутные механические испытания производятся перед электрическими испытаниями, чтобы отбраковать плохо заармированные, а также изоляторы с дефектными элементами из фарфора или стекла и с дефектной арматурой (трещины и пр.). Изоляторы, выдержавшие одноминутное механическое испытание, поступают затем на массовое электрическое испытание, описанное выше.

Источник

Характеристики изоляторов

Общие сведения, классификация и характеристики изоляторов высокого напряжения

Общие сведения

Изолятором называется законченная электромеханическая конструкция, предназначенная для электрической изоляции и механической связи частей электроустановок, находящихся под разными потенциалами.

В большинстве случаев в установках высокого напряжения (ВН) изоляторы используются для изоляции и механического крепления фаз по отношению к земле – шин распределительных устройств (РУ), проводов воздушных линий (ВЛ), токоведущих частей электрических аппаратов и др.; реже они используются в качестве междуфазовой изоляции (в основном в электрических аппаратах).

Все изоляторы изготовляются на определенные классы напряжения (Uн): 3; 6; 10; 15; 20; 35; 110; 150; 220; 330; 400; 500; 750 и 1150кВ. Чем выше Uн изоляторов, тем больше их габариты и масса, тем они сложнее в изготовлении, монтаже и эксплуатации.

нагрузкой 7,5кН (750кГс).

Требования, предъявляемые к изоляторам

Требования, предъявляемые к изоляторам, определяются условиями их эксплуатации [1]:

1. Изоляторы должны обладать достаточной электрической прочностью не только при рабочем напряжении, но и при воздействии перенапряжений, которым они могут подвергнуться в электроустановках.

2. Изоляторы должны обладать достаточной механической прочностью, т.е. не разрушаться как при нормальных нагрузках, так и при электродинамических усилиях, возникающих в результате действия токов короткого замыкания.

3. Изоляторы должны выдерживать без повреждения резкое изменение температуры при перепаде в 45 – 80ºС (в зависимости от размеров). Линейные изоляторы должны также выдерживать без повреждения медленное изменение температуры от -60 до +50ºС.

4. Изоляторы должны быть стойкими к действию влаги (дождь, снег) и поверхностным электрическим разрядам.

5. Форма изоляторов должна быть по возможности такой, чтобы электрическое поле как внутри изолятора, так и на его внешней поверхности было однородным или приближалось к однородному.

Читайте также:  Кот перегрыз провод под напряжением

6. При температурном расширении или сжатии металлической арматуры и керамического, стеклянного или полимерного диэлектрика в изоляторах не должно быть признаков механического повреждения или пробоя.

Классификация изоляторов высокого напряжения (рис. 1.1)

По условиям работы разделяются на изоляторы наружной и внутренней установки. Изоляторы, работающие на открытом воздухе (наружная установка), имеют сильно развитую поверхность юбки, а изоляторы внутренней установки (для работы в помещениях) имеют гладкую поверхность или небольшие ребра (рис.1.1.).

Рис 1.1 Классификация изоляторов высокого напряжения

Изоляторы внутренней установки изготовляются на напряжения 35кВ и ниже; для закрытых РУ (ЗРУ) более высоких классов напряжения (110 и 220кВ) используются изоляторы наружной установки на соответствующие номинальные напряжения.

Изоляторы наружной остановки изготовляются на все классы напряжений.

По своему назначению изоляторы разделяются на линейные и станционные [1].

Линейные изоляторы разделяются на штыревые и подвесные. Штыревые изоляторы применяются для изоляции проводов ВЛ напряжением 35кВ и ниже, подвесные – для изоляции проводов ВЛ 35кВ и выше. Подвесные в свою очередь разделяются на тарельчатые и стержневые. Тарельчатые комплектуются в гирлянды на соответствующие номинальные напряжения, стержневые используются на напряжении 27кВ для изоляции (фиксации) контактной сети электрифицированных железных дорог, а на 35 и 110кВ – в основном для изоляционных растяжек в аппаратах высокого напряжения (хотя и принадлежат к классу линейных). Штыревые и тарельчатые изоляторы выполняются из фарфора и стекла, стержневые – из фарфора и полимеров.

Станционные изоляторы разделяются на опорные и проходные. Изоляторы, используемые в электрических аппаратах, называются аппаратными (электрические машины, трансформаторы, выключатели и т.п.). Конструкции последних отличаются большим многообразием и в настоящем пособии не рассматриваются.

Опорные изоляторы разделяются на штыревые и стержневые. Штыревые изоляторы применяются для наружной установки и выпускаются промышленностью на напряжения 35кВ и ниже. Для более высокого напряжения (110 и 220кВ) используются колонки из штыревых изоляторов 35кВ.

Стержневые изоляторы выпускаются на напряжения 220кВ и ниже на все напряжения, в том числе Uн ≤ 35кВ – для внутренней установки. Для более высоких напряжений (330кВ и выше) они комплектуются в «треноги» из колонок стержневых изоляторов на меньшее номинальное напряжение, обычно 35кВ.

Проходные изоляторы на все напряжения выполняются с фарфоровой покрышкой, которая является основной изоляцией для изоляторов напряжением 35кВ и ниже. Это – изоляторы с воздушной полостью.

В качестве основной изоляции, заполняющей воздушную полость, могут использоваться барьеры в масле (маслонаполненные или маслобарьерные изоляторы) или бумага с маслом (на напряжении 35кВ – бумага на бакелитовом лаке). Для выравнивания напряженностей поля в слоях бумаги применены прокладки из фольги, образующие ряд последовательно включенных конденсаторов, поэтому такие изоляторы называются конденсаторными.

Маслобарьерные проходные изоляторы выпускаются на напряжения 110 и 220кВ, а бумажно-масляные конденсаторные – на 110кВ и выше. На напряжение 330кВ и выше – это единственный тип проходного изолятора.

Источник

Adblock
detector