Меню

Характеристика напряжения синхронного двигателя

Устройство и принцип действия синхронного двигателя

Синхронный электродвигатель – это устройство, преобразующее электрическую энергию в механическую. Его также можно использовать в качестве генератора. Чаще всего он применяется в компрессорах, прокатных станках, поршневых насосах и другом подобном оборудовании. Рассмотрим принцип действия синхронного электродвигателя, его характеристики и свойства.

Устройство синхронного электродвигателя

Строение агрегата данного вида типично. Двигатель состоит из:

  • Неподвижной части (якорь или статор).
  • Подвижной части (ротор или индуктор).
  • Вентилятора.
  • Контактных колец.
  • Щеток.
  • Возбудителя.

Статор представляет собой сердечник, состоящий из обмоток, который заключен в корпус. Индуктор комплектуется электромагнитами постоянного тока (полюсами). Конструкция индуктора может быть двух видов – явнополюсная и неявнополюсная. В статоре и роторе расположены ферромагнитные сердечники, изготовленные из специальной электротехнической стали. Они необходимы для уменьшения магнитного сопротивления и улучшения прохождения магнитного потока.

Частота вращения ротора в синхронном двигателе равна частоте вращения магнитного поля. Независимо от подключаемой нагрузки частота ротора неизменна, так как число пар полюсов магнитного поля и ротора совпадают. Их взаимодействие обеспечивает постоянную угловую скорость, не зависящую от момента, приложенного к валу.

Принцип работы синхронного электродвигателя

Самые распространенные типы такого рода агрегатов – однофазный и трехфазный. Принцип работы синхронного электродвигателя в обоих случаях примерно одинаков. После подключения обмотки якоря к сети ротор остается неподвижным, в то время как постоянный ток поступает в обмотку возбуждения. Направление электромагнитного момента меняется дважды за время одного изменения напряжения. При значении среднего момента равном нулю, ротор под влиянием внешнего момента (механического воздействия) разгоняется до частоты, близкой по значению частоте вращения магнитного поля в зазоре, после чего двигатель переходит в синхронный режим.

В трехфазном устройстве проводники расположены под определенным углом относительно друг друга. В них возбуждается вращающееся с синхронной скоростью электромагнитное поле.

Разгон двигателя может осуществляться в двух режимах:

  • Асинхронный. Обмотки индуктора замыкаются с помощью реостата. Вращающееся магнитное поле, возникающее при включении напряжения, пересекает короткозамкнутую обмотку, установленную на роторе. В ней индуцируются токи, взаимодействующие с вращающимся полем статора. По достижении синхронной скорости крутящий момент начинает уменьшаться и сводится к нулю после замыкания магнитного поля.
  • С помощью вспомогательного двигателя. Для этого синхронный двигатель механически соединяется со вспомогательным (двигателем постоянного тока либо трехфазным индукционным двигателем). Постоянный ток подается только после того, как вращение двигателя достигает скорости, близкой к синхронной. Магнитное поле замыкается, и связь со вспомогательным двигателем прекращается.

Характеристики синхронного электродвигателя

Хотя асинхронные двигатели считаются более надежными и дешевыми, их синхронные «собратья» имеют некоторые преимущества и широко применяются в различных областях промышленности. К отличительным характеристикам синхронного электродвигателя можно отнести:

  • Работу при высоком значении коэффициента мощности.
  • Высокий КПД по сравнению с асинхронным устройством той же мощности.
  • Сохранение нагрузочной способности даже при снижении напряжения в сети.
  • Неизменность частоты вращения независимо от механической нагрузки на валу.
  • Экономичность.
Читайте также:  Регулятор напряжения для yamaha 30 hwcs

Синхронным двигателям также присущи некоторые недостатки:

  • Достаточно сложная конструкция, делающая их производство дороже.
  • Необходимость источника постоянного тока (возбудителя или выпрямителя).
  • Сложность пуска.
  • Необходимость корректировать угловую частоту вращения путем изменения частоты питающего напряжения.

Однако в некоторых случаях использование синхронных двигателей предпочтительнее:

  • Для улучшения коэффициента мощности.
  • В длительных технологических процессах, где нет необходимости в частых запусках и остановках.

Таким образом, «плюсы» двигателей такого типа значительно превосходят «минусы», поэтому на данный момент они высоко востребованы.

Изучив синхронный двигатель, устройство и принцип его действия и учтя условия, в которых он будет эксплуатироваться, вы сможете быстро и с легкостью подобрать оптимально подходящий для ваших целей тип агрегата (защищенный, закрытый, открытый) и использовать его с максимальной эффективностью.

Источник



Характеристики и пусковые свойства синхронных двигателей

Характеристики и пусковые свойства синхронных двигателейМеханическая характеристика синхронного двигателя имеет вид горизонтальной прямой, т. е. частота вращения его не зависит от нагрузки (рис. 1, а). С увеличением нагрузки возрастает угол θ — угол между векторами напряжения сети Uc и ЭДС обмотки статора Е0 (рис. 1,б).

Из векторной диаграммы можно вывести формулу электромагнитного момента

М = ( m1 / ω1 )( U1 Е0/х1)sin θ ,

где m1 — число фаз статора; ω1 — угловая скорость поля статора; U 1 — напряжение на статоре; Е0 — ЭДС, наведенная в обмотке статора; х 1 — индуктивное сопротивление обмотки статора; θ — угол между векторами намагничивающих сил статора и ротора. Из этой формулы следует, что момент изменяется в зависимости от нагрузки по синусоидальному закону (рис. 1, в).
При отсутствии нагрузки угол θ = 0, т. е. напряжение и ЭДС совпадают по фазе. Это означает, что поле статора и поле ротора совпадают по направлению, т. е. пространственный угол между ними равен нулю.

Характеристики (а, в) и векторная диаграмма (6) синхронного двигателя

Рис. 1. Характеристики (а, в) и векторная диаграмма (6) синхронного двигателя: I — ток статора; r1 — активное сопротивление обмотки статора; х1 — индуктивное сопротивление, созданное потоком рассеянии и потоком якоря

С увеличением нагрузки момент возрастает и достигает критического максимального значения при θ = 8 0° (кривая 1 ), который двигатель в состоянии создать при заданном сетевом напряжении и токе возбуждения.

Обычно номинальное значение угла θ ном (25 ≈ 30)°, что ниже критического значения в три раза, поэтому перегрузочная способность двигателя Ммакс/Мном = 1,5 + 3. Большее значение относится к двигателям с неявно выраженными полюсами на роторе, а меньшее — с явно выраженными. Во втором случае характеристика (кривая 2) имеет критический момент при θ = 65°, что вызвано влиянием реактивного момента.

Читайте также:  Чем больше вторичная обмотка трансформатора тем напряжение

Чтобы двигатель не вышел из синхронизма при перегрузках или снижении сетевого напряжения, временно можно увеличить ток возбуждения, т. е. использовать форсированный режим.

При равномерном вращении пусковая обмотка на работу двигателя не влияет. П ри изменении нагрузки происходит изменение угла θ , что сопровождается увеличением или уменьшением скорости. Тогда пусковая обмотка начинает играть роль стабилизирующей. Возникающий в ней асинхронный момент сглаживает колебания скорости ротора.

пуск синхронного двигателя

Синхронный двигатель характеризуется следующими пусковыми свойствами:

  • I *п = I п// I ном — кратностью пускового тока, протекающею по статору в начальный момент пуска;
  • М*п = Мп/Mном — кратностью пускового момента, зависящего от количества стержней пусковой обмотки и от их активного сопротивления;
  • М*вх = Мвх/Mном — кратностью входного момента, развиваемого двигателем в асинхронном режиме перед втягиванием в синхронизм при скольжении s = 0,05;
  • М*макс = Ммакс/Мной — кратностью максимального момента в синхронном режиме двигателя;
  • U *п = U п • 100/ U 1 — наименьшим допустимым напряжением на статоре при пуске, %.

Синхронный электропривод применяют в установках, не требующих частых пусков и регулировки скорости, например для вентиляторов, насосов, компрессоров. Синхронный электродвигатель имеет более высокий КПД, чем асинхронный, может работать с перевозбуждением, т. е. с отрицательным углом φ , тем самым компенсируя индуктивную мощность других потребителей.

Хотя синхронный двигатель более сложен по конструкции, требует источника постоянного тока, имеет контактные кольца, тем не менее он оказывается экономически более эффективным, чем асинхронный, особенно для привода мощных механизмов.

Источник

Механические характеристики синхронных электромашин при пуске

Устройство синхронного электродвигателя таково, что он развивает вращающий момент только при условии вращения его ротора синхронно с магнитным полем статора. Для обеспечения разгона синхронного электродвигателя его ротор снабжают специальной короткозамкнутой пусковой обмоткой.

В пазы полюсных наконечников укладывают стержни пусковой обмотки и замыкают ее накоротко короткозамыкающими кольцами. При этом при подключении статорной обмотки синхронной электрической машины в сеть она будет запускаться как обычный асинхронный электродвигатель с КЗ ротором. Пусковой момент будет создаваться взаимодействием магнитных потоков статора и короткозамкнутого ротора и, соответственно, электродвигатель будет разгонятся. Когда скорость ротора достигнет «подсинхронной», а это 95% — 98% синхронной, на обмотку возбуждения подают постоянный ток (ток возбуждения), после чего двигатель втягивается в синхронизм. Механическая характеристика синхронной машины при пуске будет иметь две характерные точки:

  • Пусковой момент М пуск, который двигатель может развить при неподвижном состоянии (S = 1);
  • Входной или подсинхронный момент М вх, который развивает синхронный электродвигатель при 95% синхронной скорости (S ≈ 0.05).

В зависимости от назначения, а также условий работы электропривода, требуются различные соотношения между данными моментами и различные их величины.

Чем больше будет сопротивление пусковой обмотки, тем будет больше критическое скольжение, которое влияет на максимум момента. Соответственно поменяется и величина пускового момента при S = 1, а также подсинхронного S = 0,05; величина последнего довольно существенна при вхождении в синхронизм. Чем будет больше подсинхронный момент, тем больше будет скорость, к которой сможет разогнаться синхронный электродвигатель а режиме асинхронного и, соответственно, ему будет легче втянутся в синхронизм. Механическая характеристика для асинхронного режима показана ниже:

Читайте также:  Какими огнетушителями допускается тушить электроустановки под напряжением до 10000 вольт

Из данной фигуры мы можем увидеть, что увеличивая подсинхронный момент мы уменьшаем пусковой, и наоборот. Поэтому выбирая синхронный электродвигатель для конкретного механизма необходимо всегда согласовать пусковые характеристики электродвигателя и рабочего механизма М с = φ(n).

При асинхронном пуске ток статора будет больше номинального в несколько раз I пуск = 3÷5I ном. Чтоб снизить этот ток понижают напряжение на обмотках статора. Для этого используют пусковые реакторы или автотрансформаторы. При этом величина пускового тока будет снижена пропорционально напряжению на статоре, но при этом снизится пусковой и критический моменты пропорционально квадрату напряжения. Благодаря развитию современных технологий используют для пуска преобразователи частоты, но этот вид пуска мы рассмотрим в отдельной статье.

Также пусковые характеристики будут во многом зависеть от перегрузочной способности синхронной машины в нормальном режиме. Перегрузочная способность возрастет с увеличением воздушного зазора, однако такое увеличение приведет к увеличению потока рассеивания, что в свою очередь приведет к уменьшению моментов при асинхронном пуске. В связи с такой противоречивостью условий пуска и перегрузочной способности приходится принимать некоторые средние параметры, при которых характеристики двигателя в наибольшей степени отвечают всем поставленным требованиям.

В процессе пуска также непосредственное участие принимает и обмотка ротора. В начальной стадии пуска в ней индуктируется довольно значительная ЭДС, которая может привести к пробою изоляции (если оставить ее в разомкнутом виде). Поэтому обмотку ротора замыкают на активное сопротивление в 10 – 12 раз больше чем сопротивление самой обмотки. Замыкание роторной обмотки в процессе пуска накоротко не рекомендуется, так как из-за явления одноосного включения возможно значительное уменьшения пускового момента при половине синхронной скорости. Это может привести к устойчивой работе электродвигателя при пониженной скорости.

Физически данное явление можно объяснить так. Вращающееся поле статора будет индуктировать в обмотке ротора ЭДС частоты скольжения f 2 = f 1S. Данная ЭДС инициирует появления тока, который создаст пульсирующую МДС. Эту МДС, в свою очередь, можно разложить на две составляющие F 1 и F 2, которые вращаются относительно ротора в разные стороны, но с одинаковыми скоростями n 2 = ±(n 0 — n). То есть получается аналогичная картина режиму с введением в цепь ротора асинхронной машины несимметричных сопротивлений.

МДС F 1 относительно статора будет вращаться со скоростью:

Источник

Adblock
detector