Регулирование напряжения трансформаторов
2015-03-22
3678
Обмотки ВН понижающих трансформаторов снабжают регулировочными ответвлениями, с помощью которых можно получить коэффициент трансформации, несколько отличающийся от номинального, соответствующего номинальному вторичному напряжению при номинальном первичном. Необходимость в этом объясняется тем, что напряжения в разных точках линии электропередачи, куда могут быть включены понижающие трансформаторы, отличаются друг от друга и, как правило, от номинального первичного напряжения. Кроме того, напряжение в любом месте линии может изменяться из-за колебаний нагрузки. Но так как напряжение на зажимах вторичной обмотки трансформатора во всех случаях должно быть равно номинальному или незначительно отличаться от него, то возможность изменения коэффициента трансформации становится необходимой. Регулировочные ответвления делают в каждой фазе либо вблизи нулевой точки, либо посередине обмотки. В первом случае на каждой фазе делают по три ответвления (рис.1.42, а), при этом среднее ответвление соответствует номинальному коэффициенту трансформации, а два других — коэффициентам трансформации, отличающимся от номинального на ±5%. Во втором случае обмотку разделяют на две части и делают шесть ответвлений (рис. 1.42, б). Это дает возможность кроме номинального коэффициента трансформации получить еще четыре дополнительных значения, отличающихся от номинального на ±2,5 и ±5%.
Рис. 1.42. Схемы обмоток трехфазных трансформаторов с регулировочными ответвлениями
Переключать ответвления обмоток можно при отключенном от сети трансформаторе (переключение без возбуждения — ПБВ) или же без отключения трансформатора (регулирование под нагрузкой — РПН). Для ПБВ применяют переключатели ответвлений (рис. 1.43). На каждую фазу устанавливают по одному переключателю, при этом вал, вращающий контактные кольца переключателей по всем фазам одновременно, связан посредством штанги с рукояткой б на крышке бака трансформатора (см. рис. 1.13).
Рис. 1.43. Переключатель ответвлений ПБВ
Принцип РПН основан на изменении коэффициента трансформации посредством регулировочных ответвлений. Однако переключение с одного ответвления на другое осуществляют без разрыва цепи рабочего тока. С этой целью обмотку каждой фазы снабжают специальным переключающим устройством, состоящим из реактора Р двух контакторов с контактами К1 и К2 и переключателя с двумя подвижными контактами П1 и П2 (рис. 1.44, а).
Рис. 1.44. Последовательность переключения контактов под нагрузкой,
При весьма значительных мощностях трансформатора аппаратура РПН становится слишком громоздкой. В этом случае применяют регулирование напряжения с помощью волътдобавочного трансформатора, состоящего из трансформатора ПТ, включенного последовательно, и регулировочного автотрансформатора РА с переключающим устройством ПУ (рис. 1.45).
Рис. 1.45. Схемы включения вольтдобавочного трансформатора
Напряжение вторичной обмотки ∆U трансформатора ПТ суммируется с напряжением линии Uл1 и изменяет его до значения Uл2 = Uл1+ ∆U. Величина ∆U может изменяться посредством РА. При этом переключателем продольного регулирования (ППР) можно изменять фазу ∆U на ±180°, так что одно положение ППР будет соответствовать увеличению напряжения Uл2 = Uл1 + ∆U, а другое — уменьшению напряжения Uл2 = Uл1— ∆U. Кроме того, возможны и другие способы фазового воздействия на ∆U, например комбинация различных схемсоединения трехфазных обмоток (звезда, треугольник) в вольтдобавочном трансформаторе, создающая фазовые сдвиги ∆U относительно Uл1 на углы 60, 120 и 90° (поперечное регулирование). В этих случаях изменение ∆U влияет не только на значение, но и на фазу напряжения Uл2.
Контрольные вопросы
1. Каков принцип работы трансформатора?
2. Почему трансформаторы не работают от сети постоянного тока?
3. Из каких частей состоит активная часть трансформатора? Каковы их назначение и конструкция?
4. Каково назначение трансформаторного масла?
5. Как определить номинальные токи и номинальное вторичное напряжение трансформатора?
6. Почему с увеличением тока нагрузки трансформатора увеличивается ток в его первичной обмотке?
7. Что такое приведенный трансформатор?
8. Объясните порядок построения векторной диаграммы трансформатора.
9. При каких условиях и почему вторичное напряжение трансформатора становится больше ЭДС?
10. Чем объясняется несимметрия токов х.х. в трехфазном трансформаторе?
11. Как изменится отношение линейных напряжений трехфазного трансформатора, если его обмотки переключить со схемы Л/Y на Y/ Л?
12. Будет ли изменяться ток х.х. и как при увеличении или уменьшении сечения стержней магнитопровода?
13. На что расходуется активная мощность, потребляемая трансформатором при опытах х.х. и к.з.
14. Как опытным путем определить напряжение к.з. трансформатора?
15. К какой обмотке целесообразно подводить напряжение при опыте х.х., а к какой — при опыте к. з.? Объясните, почему.
16. Изменится ли основной магнитный поток и ток х.х., если трансформатор включить в сеть с частотой выше или ниже номинальной?
17. Объясните принцип регулирования напряжения под нагрузкой.
18. Каков порядок переключения контактов переключающего устройства при регулировании напряжения под нагрузкой?
19. Объясните назначение и принцип работы вольтдобавочного трансформатора.
Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов
§ 2.1. Группы соединения обмоток
Рис. 2.1. Группы соединения обмоток однофазных трансформаторов:
а — группа I/I — 0; б — группа I/I — 6
До сих пор при построении векторных диаграмм трансформатора считалось, что ЭДС фазы обмотки ВН и обмотки НН
совпадают по фазе. Но это справедливо лишь при условии намотки первичной и вторичной обмоток трансформатора в одном направлении и одноименной маркировке выводов этих обмоток, как показано на рис.2.1, а. Если же в трансформаторе изменить направление обмотки НН или же переставить обозначения ее выводов, то ЭДС
окажется сдвинутой по фазе относительно ЭДС
на 180° (рис. 2.1, б). Сдвиг фаз между ЭДС
и
принято выражать группой соединения. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига составляет 30°, то для обозначения группы соединения принят ряд чисел: 1, 2, 3, 4, 5, 6, 7,8,9, 10, 11 и 0.
Угол смещения вектора линейной ЭДС обмотки НН по отношению к вектору линейной ЭДС обмотки ВН определяют умножением числа, обозначающего группу соединения, на 30°. Угол смещения отсчитывают от вектора ЭДС обмотки ВН по часовой стрелке до вектора ЭДС обмотки НН. Например, группа соединения 5 указывает, что вектор ЭДС НН отстает по фазе от вектора ЭДС ВН на угол 5·30° = 150°.
Рис. 2.2. Сравнение положения стрелок часов с обозначением групп соединения
Для лучшего понимания принятого обозначения групп соединения пользуются сравнением с часами. При этом вектор ЭДС обмотки ВН соответствует минутной стрелке, установленной на цифре 12, а вектор ЭДС обмотки НН — часовой стрелке (рис.2.2). Так же необходимо иметь в виду, что совпадение по фазе векторов ЭДС и
, эквивалентное совпадению стрелок часов на циферблате, обозначается группой 0 (а не 12). Кроме того, следует помнить, что за положительное направление вращения векторов ЭДС принято их вращение против часовой стрелки.
Таким образом, в однофазном трансформаторе возможны лишь две группы соединения: группа 0, соответствующая совпадению по фазе и
, и группа 6, соответствующая сдвигу фаз между
и
на 180°. Из этих групп ГОСТ предусматривает лишь группу 0, она обозначается I/I—0.
|
Применением разных способов соединения обмоток в трехфазных трансформаторах можно создать 12 различных групп соединения. Рассмотрим в качестве примера схему соединений «звезда—звезда» (рис. 2.3, а). Векторные диаграммы ЭДС показывают, что сдвиг между линейными ЭДС и
в данном случае равен нулю. В этом можно убедиться, совместив точки А и а при наложении векторных диаграмм ЭДС обмоток ВН и НН. Следовательно, при указанных схемах соединения обмоток имеет место группа 0; обозначается Y/Y—0. Если же на стороне НН в нулевую точку соединить зажимы а, b и с, а снимать ЭДС с зажимов х, у и z, то ЭДС
изменит фазу на 180°и трансформатор будет принадлежать группе 6 (Y/Y—6) (рис.2.3,б).
При соединении обмоток «звезда—треугольник», показанном на рис. 2.4, а, имеет место группа 11 (Y/∆—11). Если же поменять местами начала и концы фазных обмоток НН, то вектор повернется на 180° и трансформатор будет относиться к группе 5 (Y/∆—5) (рис. 2.4, б).
При одинаковых схемах соединения обмоток ВН и НН, например Y/Y и ∆/∆, получают четные группы соединения, а при 62 неодинаковых схемах, например Y/∆ или ∆/Y, — нечетные.
Рис. 2.4. Схемы соединения обмоток и векторные диаграммы: а — для группы Y/Д—11; б — для группы Y/Д—5
Рассмотренные четыре группы соединения (0, 6, 11 и 5) называют основными. Из каждой основной группы соединения методом круговой перемаркировки выводов на одной стороне трансформатора, например на стороне НН (без изменения схемы соединения), можно получить по две производные группы. Например, если в трансформаторе с группой соединения Y/Y—0 (рис. 2.3, а) выводы обмотки НН перемаркировать и вместо последовательности аbс принять последовательность саb, то вектор ЭДС повернется на 120°, при этом получим группу соединения Y/Y—4. Если же выводы обмоток НН перемаркировать в последовательность bса, то вектор ЕаЬ повернется еще на 120°, а всего на 240°; получим группу Y/Y—8.
Аналогично от основной группы 6 путем круговой перемаркировки получают производные группы 10 и 2, от основной группы I/I — производные группы 3 и 7, от основной группы 5 — производные группы 9 и 1.
Основные группы соединения имеют некоторое преимущество перед производными, так как предусматривают одноименную маркировку выводов обмоток, расположенных на одном стержне. Это уменьшает вероятность ошибочных присоединений. Однако не все группы соединения имеют практическое применение в трехфазных трансформаторах. ГОСТ определяет схемы и группы соединения, применяемые для силовых двухобмоточных трансформаторов общепромышленного назначения (рис. 2.5).
Рис. 2.5. Схемы и группы соединения обмоток трехфазных двухобмоточных
Соединяя обмотки НН в зигзаг в сочетании с соединением обмотки ВН в звезду или треугольник, можно получить практически любой угол сдвига фаз между ЭДС обмоток ВН и НН. Этого достигают разделением обмотки НН на две части (см. § 1.11) с различным соотношением витков в этих частях, а следовательно, и с различным значением угла β (см. рис. 1.22, б).
При изготовлении или в процессе эксплуатации трансформаторов иногда возникает необходимость в опытной проверке группы соединения. Существует несколько методов такой проверки, но наиболее распространены методы фазометра и вольтметра.
Рис. 2.6. Проверка группы соединения Y/Y—0 методами фазометра (а) и вольтметра (б)
Метод фазометра. Основан на непосредственном измерении угла фазового сдвига между соответствующими линейными напряжениями (ЭДС) обмоток ВН и НН с помощью фазометра φ, включенного по схеме, показанной на рис. 2.6, а. Параллельную обмотку фазометра U—U подключают к стороне ВН, а последовательную обмотку 1—1 — к стороне НН. Для ограничения тока в последовательной обмотке ее подключают через добавочное сопротивление гдоб.. Затем трансформатор включают в сеть с симметричным трехфазным напряжением. Для удобства измерений желательно, чтобы фазометр имел полную (360°) шкалу.
Метод вольтметра. Непосредственного измерения угла фазового сдвига между линейными напряжениями (ЭДС) этот метод не дает. Это косвенный метод и основан на измерении вольтметром напряжений (ЭДС) между одноименными выводами обмоток ВН и НН. Если проверяют группу соединения Y/Y—О (рис. 2.6, б), то, соединив проводом выводы А и а, измеряют напряжение Uь-в (между выводами bи В) и Uc-С (между выводами с и С). Если предполагаемая группа соединения Y/Y—0 соответствует фактической, то напряжение (В)
где kл=UАВ/Uab — отношение линейных напряжений (ЭДС) ВН и НН, т, е. коэффициент трансформации линейных напряжений (ЭДС),
Если проверяют группы соединения 6, 11 или 5, то для проверки измеренных значений напряжений пользуются формулами:
(2-2)
(2.3)
(2.4)
Здесь UаЬ и Uxy— линейные напряжения на выводах обмоток НН, В.
Если условия равенства напряжений по приводимым формулам не соблюдаются, то это свидетельствует о нарушениях в маркировке выводов трансформатора.
Источник
Регулирование напряжения трансформаторов
Обмотки ВН понижающих трансформаторов снабжают регулировочными ответвлениями, с помощью которых можно получить коэффициент трансформации, несколько отличающийся от номинального, соответствующего номинальному вторичному напряжению при номинальном первичном. Необходимость в этом объясняется тем, что напряжения в разных точках линии электропередачи, куда могут быть включены понижающие трансформаторы, отличаются друг от друга и, как правило, от номинального первичного напряжения. Кроме того, напряжение в любом месте линии может изменяться из-за колебаний нагрузки. Но так как напряжение на зажимах вторичной обмотки трансформатора во всех случаях должно быть равно номинальному или незначительно отличаться от него, то возможность изменения коэффициента трансформации становится необходимой. Регулировочные ответвления делают в каждой фазе либо вблизи нулевой точки, либо посередине обмотки. В первом случае на каждой фазе делают по три ответвления (рис.1.42, а), при этом среднее ответвление соответствует номинальному коэффициенту трансформации, а два других — коэффициентам трансформации, отличающимся от номинального на ±5%. Во втором случае обмотку разделяют на две части и делают шесть ответвлений (рис. 1.42, б). Это дает возможность кроме номинального коэффициента трансформации получить еще четыре дополнительных значения, отличающихся от номинального на ±2,5 и ±5%.
Рис. 1.42. Схемы обмоток трехфазных трансформаторов с регулировочными ответвлениями
Переключать ответвления обмоток можно при отключенном от сети трансформаторе (переключение без возбуждения — ПБВ) или же без отключения трансформатора (регулирование под нагрузкой — РПН). Для ПБВ применяют переключатели ответвлений (рис. 1.43). На каждую фазу устанавливают по одному переключателю, при этом вал, вращающий контактные кольца переключателей по всем фазам одновременно, связан посредством штанги с рукояткой б на крышке бака трансформатора (см. рис. 1.13).
Рис. 1.43. Переключатель ответвлений ПБВ
Принцип РПН основан на изменении коэффициента трансформации посредством регулировочных ответвлений. Однако переключение с одного ответвления на другое осуществляют без разрыва цепи рабочего тока. С этой целью обмотку каждой фазы снабжают специальным переключающим устройством, состоящим из реактора Р двух контакторов с контактами К1 и К2 и переключателя с двумя подвижными контактами П1 и П2 (рис. 1.44, а).
Рис. 1.44. Последовательность переключения контактов под нагрузкой,
При весьма значительных мощностях трансформатора аппаратура РПН становится слишком громоздкой. В этом случае применяют регулирование напряжения с помощью волътдобавочного трансформатора, состоящего из трансформатора ПТ, включенного последовательно, и регулировочного автотрансформатора РА с переключающим устройством ПУ (рис. 1.45).
Рис. 1.45. Схемы включения вольтдобавочного трансформатора
Напряжение вторичной обмотки ∆U трансформатора ПТ суммируется с напряжением линии Uл1 и изменяет его до значения Uл2 = Uл1+ ∆U. Величина ∆U может изменяться посредством РА. При этом переключателем продольного регулирования (ППР) можно изменять фазу ∆U на ±180°, так что одно положение ППР будет соответствовать увеличению напряжения Uл2 = Uл1 + ∆U, а другое — уменьшению напряжения Uл2 = Uл1— ∆U. Кроме того, возможны и другие способы фазового воздействия на ∆U, например комбинация различных схемсоединения трехфазных обмоток (звезда, треугольник) в вольтдобавочном трансформаторе, создающая фазовые сдвиги ∆U относительно Uл1 на углы 60, 120 и 90° (поперечное регулирование). В этих случаях изменение ∆U влияет не только на значение, но и на фазу напряжения Uл2.
Контрольные вопросы
1. Каков принцип работы трансформатора?
2. Почему трансформаторы не работают от сети постоянного тока?
3. Из каких частей состоит активная часть трансформатора? Каковы их назначение и конструкция?
4. Каково назначение трансформаторного масла?
5. Как определить номинальные токи и номинальное вторичное напряжение трансформатора?
6. Почему с увеличением тока нагрузки трансформатора увеличивается ток в его первичной обмотке?
7. Что такое приведенный трансформатор?
8. Объясните порядок построения векторной диаграммы трансформатора.
9. При каких условиях и почему вторичное напряжение трансформатора становится больше ЭДС?
10. Чем объясняется несимметрия токов х.х. в трехфазном трансформаторе?
11. Как изменится отношение линейных напряжений трехфазного трансформатора, если его обмотки переключить со схемы Л/Y на Y/ Л?
12. Будет ли изменяться ток х.х. и как при увеличении или уменьшении сечения стержней магнитопровода?
13. На что расходуется активная мощность, потребляемая трансформатором при опытах х.х. и к.з.
14. Как опытным путем определить напряжение к.з. трансформатора?
15. К какой обмотке целесообразно подводить напряжение при опыте х.х., а к какой — при опыте к. з.? Объясните, почему.
16. Изменится ли основной магнитный поток и ток х.х., если трансформатор включить в сеть с частотой выше или ниже номинальной?
17. Объясните принцип регулирования напряжения под нагрузкой.
18. Каков порядок переключения контактов переключающего устройства при регулировании напряжения под нагрузкой?
19. Объясните назначение и принцип работы вольтдобавочного трансформатора.
Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов
§ 2.1. Группы соединения обмоток
Рис. 2.1. Группы соединения обмоток однофазных трансформаторов:
а — группа I/I — 0; б — группа I/I — 6
До сих пор при построении векторных диаграмм трансформатора считалось, что ЭДС фазы обмотки ВН и обмотки НН
совпадают по фазе. Но это справедливо лишь при условии намотки первичной и вторичной обмоток трансформатора в одном направлении и одноименной маркировке выводов этих обмоток, как показано на рис.2.1, а. Если же в трансформаторе изменить направление обмотки НН или же переставить обозначения ее выводов, то ЭДС
окажется сдвинутой по фазе относительно ЭДС
на 180° (рис. 2.1, б). Сдвиг фаз между ЭДС
и
принято выражать группой соединения. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига составляет 30°, то для обозначения группы соединения принят ряд чисел: 1, 2, 3, 4, 5, 6, 7,8,9, 10, 11 и 0.
Угол смещения вектора линейной ЭДС обмотки НН по отношению к вектору линейной ЭДС обмотки ВН определяют умножением числа, обозначающего группу соединения, на 30°. Угол смещения отсчитывают от вектора ЭДС обмотки ВН по часовой стрелке до вектора ЭДС обмотки НН. Например, группа соединения 5 указывает, что вектор ЭДС НН отстает по фазе от вектора ЭДС ВН на угол 5·30° = 150°.
Рис. 2.2. Сравнение положения стрелок часов с обозначением групп соединения
Для лучшего понимания принятого обозначения групп соединения пользуются сравнением с часами. При этом вектор ЭДС обмотки ВН соответствует минутной стрелке, установленной на цифре 12, а вектор ЭДС обмотки НН — часовой стрелке (рис.2.2). Так же необходимо иметь в виду, что совпадение по фазе векторов ЭДС и
, эквивалентное совпадению стрелок часов на циферблате, обозначается группой 0 (а не 12). Кроме того, следует помнить, что за положительное направление вращения векторов ЭДС принято их вращение против часовой стрелки.
Таким образом, в однофазном трансформаторе возможны лишь две группы соединения: группа 0, соответствующая совпадению по фазе и
, и группа 6, соответствующая сдвигу фаз между
и
на 180°. Из этих групп ГОСТ предусматривает лишь группу 0, она обозначается I/I—0.
|
Применением разных способов соединения обмоток в трехфазных трансформаторах можно создать 12 различных групп соединения. Рассмотрим в качестве примера схему соединений «звезда—звезда» (рис. 2.3, а). Векторные диаграммы ЭДС показывают, что сдвиг между линейными ЭДС и
в данном случае равен нулю. В этом можно убедиться, совместив точки А и а при наложении векторных диаграмм ЭДС обмоток ВН и НН. Следовательно, при указанных схемах соединения обмоток имеет место группа 0; обозначается Y/Y—0. Если же на стороне НН в нулевую точку соединить зажимы а, b и с, а снимать ЭДС с зажимов х, у и z, то ЭДС
изменит фазу на 180°и трансформатор будет принадлежать группе 6 (Y/Y—6) (рис.2.3,б).
При соединении обмоток «звезда—треугольник», показанном на рис. 2.4, а, имеет место группа 11 (Y/∆—11). Если же поменять местами начала и концы фазных обмоток НН, то вектор повернется на 180° и трансформатор будет относиться к группе 5 (Y/∆—5) (рис. 2.4, б).
При одинаковых схемах соединения обмоток ВН и НН, например Y/Y и ∆/∆, получают четные группы соединения, а при 62 неодинаковых схемах, например Y/∆ или ∆/Y, — нечетные.
Рис. 2.4. Схемы соединения обмоток и векторные диаграммы: а — для группы Y/Д—11; б — для группы Y/Д—5
Рассмотренные четыре группы соединения (0, 6, 11 и 5) называют основными. Из каждой основной группы соединения методом круговой перемаркировки выводов на одной стороне трансформатора, например на стороне НН (без изменения схемы соединения), можно получить по две производные группы. Например, если в трансформаторе с группой соединения Y/Y—0 (рис. 2.3, а) выводы обмотки НН перемаркировать и вместо последовательности аbс принять последовательность саb, то вектор ЭДС повернется на 120°, при этом получим группу соединения Y/Y—4. Если же выводы обмоток НН перемаркировать в последовательность bса, то вектор ЕаЬ повернется еще на 120°, а всего на 240°; получим группу Y/Y—8.
Аналогично от основной группы 6 путем круговой перемаркировки получают производные группы 10 и 2, от основной группы I/I — производные группы 3 и 7, от основной группы 5 — производные группы 9 и 1.
Основные группы соединения имеют некоторое преимущество перед производными, так как предусматривают одноименную маркировку выводов обмоток, расположенных на одном стержне. Это уменьшает вероятность ошибочных присоединений. Однако не все группы соединения имеют практическое применение в трехфазных трансформаторах. ГОСТ определяет схемы и группы соединения, применяемые для силовых двухобмоточных трансформаторов общепромышленного назначения (рис. 2.5).
Рис. 2.5. Схемы и группы соединения обмоток трехфазных двухобмоточных
Соединяя обмотки НН в зигзаг в сочетании с соединением обмотки ВН в звезду или треугольник, можно получить практически любой угол сдвига фаз между ЭДС обмоток ВН и НН. Этого достигают разделением обмотки НН на две части (см. § 1.11) с различным соотношением витков в этих частях, а следовательно, и с различным значением угла β (см. рис. 1.22, б).
При изготовлении или в процессе эксплуатации трансформаторов иногда возникает необходимость в опытной проверке группы соединения. Существует несколько методов такой проверки, но наиболее распространены методы фазометра и вольтметра.
Рис. 2.6. Проверка группы соединения Y/Y—0 методами фазометра (а) и вольтметра (б)
Метод фазометра. Основан на непосредственном измерении угла фазового сдвига между соответствующими линейными напряжениями (ЭДС) обмоток ВН и НН с помощью фазометра φ, включенного по схеме, показанной на рис. 2.6, а. Параллельную обмотку фазометра U—U подключают к стороне ВН, а последовательную обмотку 1—1 — к стороне НН. Для ограничения тока в последовательной обмотке ее подключают через добавочное сопротивление гдоб.. Затем трансформатор включают в сеть с симметричным трехфазным напряжением. Для удобства измерений желательно, чтобы фазометр имел полную (360°) шкалу.
Метод вольтметра. Непосредственного измерения угла фазового сдвига между линейными напряжениями (ЭДС) этот метод не дает. Это косвенный метод и основан на измерении вольтметром напряжений (ЭДС) между одноименными выводами обмоток ВН и НН. Если проверяют группу соединения Y/Y—О (рис. 2.6, б), то, соединив проводом выводы А и а, измеряют напряжение Uь-в (между выводами bи В) и Uc-С (между выводами с и С). Если предполагаемая группа соединения Y/Y—0 соответствует фактической, то напряжение (В)
где kл=UАВ/Uab — отношение линейных напряжений (ЭДС) ВН и НН, т, е. коэффициент трансформации линейных напряжений (ЭДС),
Если проверяют группы соединения 6, 11 или 5, то для проверки измеренных значений напряжений пользуются формулами:
(2-2)
(2.3)
(2.4)
Здесь UаЬ и Uxy— линейные напряжения на выводах обмоток НН, В.
Если условия равенства напряжений по приводимым формулам не соблюдаются, то это свидетельствует о нарушениях в маркировке выводов трансформатора.
Источник
Регулирования напряжения под нагрузкой – РПН трансформатора
Различное оборудование, потребляющее электрический ток и подключаемое через трансформатор, требует индивидуальных параметров напряжения. Рассмотрим понятие РПН трансформатора, особенности его конструкции и регулировки, прочие сопутствующие вопросы.
- Что такое РПН
- Особенности конструкции, принцип действия
- Классификация
- Защита РПН
- Преимущества и недостатки регулирования посредством РПН
- Как проводится регулировка
Что такое РПН
РПН называют устройство регулирования напряжения под нагрузкой. Данный блок позволяет изменять характеристики напряжения агрегата без отключения трансформатора.
Иногда характеристики сети требуется изменить в процессе эксплуатации, не отключая агрегат, или параметры варьируются в ходе подачи тока. Чтобы обеспечить надлежащий режим подачи напряжения в трансформаторах применяется РПН.
В зависимости от напряжения и мощностных характеристик трансформатора, РПН может изменять коэффициент трансформации от 10 до 16 процентов.
Особенности конструкции, принцип действия
РПН, не смотря на характер действия и выполняемую функцию, не следует относить к реле. Но данное устройство отличается простым принципом действия.
Система переключающего устройства
На каждой из фаз трансформатора устанавливаются по два подвижных контакта. Один из них прижат к витку катушки, обеспечивающему заданную величину напряжения. При переводе, второй контакт прижимается к витку, изменяющему указанное значение. Включение может производиться вручную или с использованием привода.
Конструкция устройства отличается, в зависимости от его типа. Но основной принцип предполагает изменение количества работающих витков на первичной катушке трансформатора.
Классификация
Различают несколько типов РПН, отличающихся следующими характеристиками:
- разновидностью токоограничивающего элемента – с реакторами или резисторами;
- наличием или отсутствием контактора;
- количеством фаз – однофазные и трёхфазные;
- типом токовой коммутации.
Расшифровка маркировки для РПН типа UBB…
В зависимости от способа коммутации тока, существуют следующие разновидности устройств:
- дуга разрывается в объёме, заполненном трансформаторным маслом – устройство предполагает использование дугогасительных контактов, не требующих применения специальных элементов для гашения дуги;
- дуга разрывается в разреженном пространстве – предполагают использование вакуумных дугогасительных камер, производимых промышленным способом;
- отключение производится посредством тиристоров, бездуговым способом;
- комбинированные способы – с сочетанием различных типов коммутации.
Чтобы обеспечить безопасность и функциональность РПН, они снабжаются автоматическими контролирующими элементами и регуляторами напряжения.
Кроме указанных устройств, для изменения характеристик напряжения в мощных агрегатах могут применяться специальные вольтодобавочные трансформаторы. Данное оборудование подключается последовательно и используется вместе с основным агрегатом в качестве вспомогательного. Но указанный способ не получил широкого применения в связи с дороговизной и высокой сложностью схемы.
Защита РПН
Для обеспечения штатной работы устройства применяется газовая защита. Выполняется дополнительная ёмкость (расширитель), соединённая с основной масляной средой трансформатора специальным каналом, в котором установлено реле и сигнальный элемент.
При незначительном газообразовании сигнальный элемент указывает на снижение уровня масла. В случае выброса, расширившееся масло вытесняется в расширитель. Если интенсивность выброса достигает установленного значения, срабатывает реле, отключая трансформатор. Таким способом предохраняется от разрушения контакторы РПН.
Преимущества и недостатки регулирования посредством РПН
Преимущества регулирования без отключения нагрузки в возможности поддержания параметров сети на выходе трансформатора на заданном уровне при изменении характеристик подаваемого напряжения. Также это устройство позволяет регулировать параметры, с учётом необходимой величины. Выполнение указанных функций достигается без отключения агрегата.
Недостатки связаны с необходимостью усложнения конструкции трансформатора, связанной с использованием дополнительных элементов. Одновременно снижается надёжность работы агрегата, увеличивается его масса и габаритные размеры.
Как проводится регулировка
Рассмотрим процесс регулировки напряжения на схеме реакторного РПН.
Устройство работает следующим образом:
- в начальном положении оба избирательных контакта И1 и И2 подключены к одному витку катушки;
- если необходимо перейти на другую ступень, размыкается К2 (без отключения напряжения) с прохождением тока по реакторной ветви (И1 – К1);
- производится перевод контакта И2 на другой виток, с замыканием контактора К2;
- происходит разделение рабочего тока между реакторными ветвями; значение уравнительного тока ограничивает реактор;
- затем после размыкания К1, И1 переводится на другую ветвь с последующим замыканием контакта.
Последующие переключения производятся в аналогичном порядке.
Применение РПН значительно расширяет вариативные возможности трансформаторов и обеспечивает изменение характеристик напряжения, подаваемого на потребляющие устройства без отключения подачи тока.
Регулирование напряжения без нагрузки: Переключение без возбуждения – ПБВ
Более подробное описание РПН можно найти здесь: Читать подробнее
Источник