Меню

Какими путями можно добиться резонанса напряжений

Контрольные вопросы

1. Записать выражение закона Ома для цепи с последовательным соединением конденсатора и индуктивной катушки. Чему равны полное сопротивление цепи и коэффициент мощности cos ?

Коэффициент мощности cosφ при резонансе напряжений равен единице.

2. Условие, признак и применение резонанса напряжений. В каком случае резонанс напряжений вреден? Почему?

Режим, при котором в цепи с последовательным соединением индуктивного и емкостного элемента напряжение на входе совпадает по фазе с током, резонанс напряжения.

внезапное возникновение резонансного режима в цепях большой мощности может вызывать аварийные ситуацию, привести к пробою изоляции проводов и кабелей и создать опасность для персонала.

3. Какими способами можно достичь резонанса напряжений?

При подключении колебательного контура, состоящего из катушки индуктивности и конденсатора, к источнику энергии могут возникнуть резонансное явление. Возможны два основных типа резонанса: при последовательном соединение катушки и конденсатора- резонанс напряжений, при их параллельном соединении- резонансов токов.

4. Почему при резонансе напряжений U2>U1?

Где R – активное сопротивление

XL – индуктивное сопротивление катушки

XC – емкостное сопротивление конденсатора

Z – полное сопротивление переменного тока

При резонансе: UL = UС,

Где UС – напряжение катушки,

UL – напряжение конденсатора

Напряжение можно найти:

Где UR – напряжение катушки, к которой подключен вольтметр V2, значит напряжение V2=V1

5. Какова особенность резонанса напряжений? Объяснить ее.

Следовательно, режим резонанса может быть достигнут изменением индуктивности катушки L, емкости конденсата С или частоты входного напряжения ω.

6. Записать выражение закона Ома через проводимости для цепи с параллельным соединением конденсатора и индуктивной катушки. Чему равна полная проводимость?

Закон Ома через проводимости для цепи переменного тока с параллельным соединение ветвей.

7. Условие, признак и применение резонанса токов.

т.е равенство индуктивной и емкостной проводимостей.

8. Какими способами можно достичь резонанса токов?

Режим, при котором в цепи, содержащей параллельное ветви с индуктивным и емкостным элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением , резонансом токов.

9. Почему при резонансе токов I2>I1?

Потому что, исходя из векторной диаграммы токов при резонансе график будет представлять собой прямоугольный треугольник, где токи I и I1 будут являться катетами, а ток I2 – гипотенузой. Следовательно, и I2 будет больше чем I1.

10. Какова особенность резонанса токов? Объяснить ее.

При резонансе токов токи в ветвях значительно больше тока неразветвленной части цепи. Это свойство-усилие тока- является важнейшей особенностью резонанса токов.

11. Объяснить построение векторных диаграмм.

Целью ее построения является определение активной и реактивной составляющих напряжения на катушке и угла сдвига фаз между напряжением на входе цепи и током

Источник



Резонанс напряжений

Резонансом напряжений называется режим электрической цепи синусоидального тока с последовательным соединенением резистивного R, индуктивноо L и емкостного С элементов, при котором угол сдвига фаз между общим напряжением (напряжением сети) и током в цепи равен нулю.

Условием наступления резонанса напряженийявляется равенство индуктивного и емкостного сопротивлений цепи:

Электрическая цепь, питаемая синусоидальным переменным током, в которую входит конденсатор и катушка индуктивности называется колебательным контуром.

Резонанс напряжений можно получить тремя способами:

1. Изменением частоты w синусоидального тока;

2. Изменением величин индуктивности или емкости колебательного контура, при котором меняются индуктивное XL или емкостное XC сопротивление;

3. При одновременном изменении параметров w, L, C цепи колебательного контура.

Из условия резонанса напряжения (3.27) следует, что так как

XL = wL и XC = 1/wC,

то при резонансе напряжений

где wрез, рад/сек – резонансная частота.

Резонанс напряжений характеризуется рядом существенных особенностей:

1. Так как при резонансе напряжений угол сдвига фаз между напряжением и током равен нулю (j = yu – yi = 0), то коэффициент мощности при резонансе принимает наибольшее значение, равноеединице:

cosj = cos0° = 1. (3.29)

В этом случае, как видно из векторной диаграммы на рис. 3.22,а, вектор тока и вектор общего напряжения совпадают по направлению, так как они имеют равные начальные фазы yu = yi.

2. При резонансе напряжений векторы напряжения на индуктивном и емкостном элементах оказываются равными по величине и противоположными по фазе:

так как XLI = XCI, а в комплексной форме (см. рис. 3.22,а).

3. Напряжение на активном сопротивлении при резонансе напряжений оказывается равным напряжению сети (рис. 4.22,а) так как

В комплексной форме .

4. Отношение индуктивного или емкостного сопротивлений к активному сопротивлению цепи с R,L,C-элементами при резонансе называется добротностью колебательного контураQ

Умножив числитель и знаменатель этих дробей на ток I, получим выражения для добротности колебательного контура через отношения напряжений

При больших значениях индуктивного XL и емкостного XC сопротивлений и малых значениях активного сопротивления R цепи (R > U:

то есть напряжение на индуктивности и конденсаторе последовательного колебательного контура при его высокой добротности в режиме резонанса напряжений могут во много раз превысить напряжение питания.

Читайте также:  Фотоэффект зависимость запирающего напряжения от частоты

Например, если у колебательного контура последовательной цепи с
R,L,C-элементами, питаемым синусоидальным напряжением U = 220 В, R = 1 Ом, XLрез = XCрез = 1000 Ом, то напряжение на индуктивности и конденсаторе, как следует из (3.34) равно:

ULрез = UCрез = U·Q=220·1000 = 220000 В = 220 кВ.

Поэтому при работе электротехнического оборудования, питаемого сетевым напряжением 220/380 вольт резонанс напряжений никогда не используется.

Однако в разнообразных устройствах радиотехники и электроники, где напряжение питания колебательного контура составляет микровольты
(1мкВ = 10 -6 В), резонанс напряжений широко используется, позволяя многократно усилить входной сигнал в виде синусоидального напряжения.

Рис. 3.22. Резонанс напряжений в цепи с последовательным соединением R,L,C-элементов

а) – векторная диаграмма; б) – вырожденный треугольник сопротивлений (Х = 0);

в) – вырожденный треугольник мощностей (Q = 0)

5. Так как при резонансе напряжений XL = XC (3.27), то полное сопротивление цепи принимает минимальное значение, равное активному сопротивлению:

а общее реактивное сопротивление цепи становится равным нулю:

Поэтому треугольник сопротивлений при резонансе напряжений имеет вырожденный характер, как показано на рис. 3.22,б.

6. На основании закона Ома и из формулы (3.35) следует, что ток I в цепи при резонансе напряжений достигает наибольшего значения:

Iрез = U/Zрез = U/R. (3.37)

Отсюда следует, что ток в цепи при резонансе напряжений может оказаться значительно больше тока, который мог бы быть при отсутствии резонанса.

Это свойство позволяет обнаружить резонанс напряжений при изменении частоты w, изменении индуктивности L или емкости С. Однако резонансный ток при определенных условиях опасен – он может, достигнув чрезмерно большой величины, привести к перегреву элементов цепи и выходу их из строя.

7. Активная мощность при резонансе напряжений имеет наибольшее значение, так как связана с квадратом тока

P = (Iрез) 2 R, (3.38)

а ток Iрез – максимален.

8. Общая реактивная мощность Q при резонансе напряжений равна нулю:

так как UL = UC . Поэтому треугольник мощностей при резонансе имеет вырожденный характер, как показано на рис. 3.22,в.

9. При условии R > S = P, (3.40)

то есть эти мощности могут во много раз превысить потребляемую полную мощность S. При этом полная мощность S при резонансе целиком выделяется на резистивном элементе R, в виде активной мощности Р.

Физически это объясняется тем, что при резонансе напряжений происходит периодический обмен энергии магнитного поля в индуктивном элементе и энергии электрического поля в конденсаторе. При этом интенсивность этого обмена, как величины реактивных мощностей QL и QC , в сравнении с потребляемой активной мощностью Р

QL/P = XL/R = Q; QC/P = XC/R = Q (3.41)

определяется соотношениями реактивных и активного сопротивления цепи, как и для напряжений UL, UC и U, то есть добротностью Q колебательного контура цепи (см. п.4).

Кривые, выражающие зависимость полного тока I, сопротивления цепи Z, напряжения на индуктивности UL и конденсаторе UС , коэффициента мощности cosj от емкости батареи конденсатора С, называются резонансными кривыми.

На рис. 3.23 приведены резонансные кривые (UL, UС, I, Z, cosj) = f(C), построенные в общем виде при U = const и w = 2pf = const.

Рис. 3.23. Резонансные кривые UL , UС , I , Z, cosj в зависимости от емкости С
при последовательном соединении катушки индуктивности и батареи конденсаторов

Анализ этих зависимостей показывает, что при увеличении емкости С батареи конденсаторов полное сопротивление цепи Z сначала уменьшается, достигает минимума в режиме резонанса и становится равным активному сопротивлению R , а затем снова возрастает с увеличением емкости. Соответственно изменению Z меняется полный ток цепи (по закону Ома I обратно пропорционален Z): с ростом емкости конденсаторов ток I вначале увеличивается, достигает максимума в режиме резонанса, а затем вновь уменьшается.

Коэффициент мощности cosj изменяется с изменением емкости С в том же порядке: сначала с увеличением емкости С коэффициент мощности возрастает, достигая максимума равного единице в режиме резонанса, а затем уменьшается, в пределе стремясь к нулю.

Напряжения на индуктивности и конденсаторах имеют максимумы вблизи режима резонанса и становятся равными друг другу в этом режиме. Следует отметить, что достигаемые величины напряжений на конденсаторах и катушке индуктивности в режиме резонанса напряжений и вблизи него могут во много раз превышать входное напряжение приложенное ко всей цепи (см. п. 4).

С точки зрения электробезопасности и безаварийного режима работы, это следует учитывать при проведении исследования резонанса напряжения на стенде, задавая величину напряжения питания цепи U в достаточно низких пределах (U = 20 ¸ 25 В).

Таким образом, резонансные кривые позволяют установить минимальное полное сопротивление и наибольший ток в цепи при максимуме коэффициента мощности, равном единице, когда в цепи с последовательным соединением катушки индуктивности и батареи конденсаторов возникает резонанс напряжений.

Читайте также:  Напряжение короткого замыкания для трансформатора напряжения

Выводы:

1. Резонанс напряжений в промышленных электротехнических установках, питаемых синусоидальным сетевым напряжением 220/380 В – нежелательное и опасное явление, так как может вызвать аварийную ситуацию при возможном перенапряжении на отдельных участках цепи, привести к пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов и опасно для обслуживающего персонала.

2. В то же время, резонанс напряжений широко используется в радиотехнике, в автоматике и электронике для настройки колебательных контуров в резонанс на определенную частоту, а также в различного рода приборах и устройствах, основанных на резонансном явлении.

Содержание работы

Лабораторная работа 2б делится на четыре части:

1. Подготовительная часть.

2. Измерительная часть (проведение опытов и снятие показаний приборов).

3. Расчетная часть (определение расчетных величин по формулам).

4. Оформительская часть (построение векторных диаграмм).

Примечание

Электромонтажные работы по исследованию резонанса напряжений в цепи с последовательным соединением R,L,C-элементов на модернизированном лабораторном стенде ЭВ-4 не проводятся, в отличие от работ на старых стендах (см. в [2] – Работа 2б, п.2. Электромонтажная часть).

1. Подготовительная часть

Подготовка к проведению лабораторной работы включает:

1. Изучение теоретической части настоящего пособия и литературы [1,2,3,4], относящихся к теме данной работы.

2. Предварительное оформление лабораторной работы в соответствии с существующими требованиями [2,3].

В результате предварительного оформления лабораторной работы №2б в рабочей тетради или журнале (на листах формата А4 с компьютерной распечаткой) студентом должен быть заполнен титульный лист, в работе должны быть указаны название работы и ее цель, приведены основные сведения по работе, взятые из раздела выше и формулы, необходимые для вычисления расчетных величин, представлены принципиальные и эквивалентные схемы замещения, заготовлены таблицы, соответственно числу опытов в работе.

Кроме этого, должно быть оставлено свободное место для построения векторных диаграмм.

2. Измерительная часть

Необходимые измерения параметров исследуемой цепи однофазного тока с последовательным соединением электроприемников при резонансе напряжений проводятся с помощью принципиальной схемы (рис. 3.24). Данная схема соответствует панели модернизированног стенда ЭВ-4 [4] с аналогичной мнемосхемой и цифровыми измерительными приборами (см. фото на рис. 3.26).

Для более заметного вида резонансных кривых в последовательной цепи электроприемников резистор R отсутствует (на принципиальной схеме рис. 3.23 он зашунтирован).

Этой схеме соответствует схема замещения с последовательно соединенными катушкой индуктивности и батареей конденсаторов, показанная на рис. 3.25.

3.24 Принципиальная схема цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

3.25 Схема замещения цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

1. Перед подачей питания к исследуемой цепи на панели стенда с мнемосхемой и цифровыми измерительными приборами (рис. 3.26) перевести все выключатели (S1 ÷ S6, S’1 ÷ S’6), расположенные на этой панели, в нижнее положение (состояние – «откл»).

Рис. 3.26. Паналь стенда с цифровыми измерительными приборами и
мнемосхемой для проведения лабораторой работы 2б «Резонанс напряжений
в однофазной цепи с активно-реактивными элементами»

2. На панели стенда из последовательной цепи R,L,C-элементов исключить резистор R, зашунтировав его с помощью электромонтажного провода (красный провод-шунт на принципиальной схеме рис. 3.24) вставив его концы в гнезда по бокам вольтметра VR.

3. Установить начальную общую емкость конденсаторов С = 40 мкФ нажатием соответствующих черных кнопок выключателей рядом с подключаемыми конденсаторами на панели №4 стенда с мнемосхемой батареи конденсаторов (см. рис. 3.28).

4. Подключить лабораторный автотрансформатор (ЛАТР), установленный на горизонтальной панели блока питания (рис. 3.27) к сетевому напряжению (

220 В), нажав черные кнопки «вкл» выключателей. При этом загораются две сигнальные лампы «сеть». После этого нужнообязательноповернуть ручку регулятора ЛАТРАа против часовой стрелки до упора, тем самым, снизив напряжение на его выходе до нуля.

Рис. 3.27. Панель блока питания лабораторного стенда

Рис. 3.28. Панель №4 стенда с мнемосхемами батареи конденсаторов
и катушки индуктивности

5. Подать регулируемое напряжение от ЛАТРа ко входу исследуемой цепи и подключить цифровые измерительные приборы, установив на панели стенда с мнемосхемой кнопки всех выключателей (S1 ÷ S6, S’1 ÷ S’6) в положение «вкл». При этом должны засветиться зеленые цифры на электроизмерительных приборах.

6. Плавным поворотом по часовой стрелке ручки регулятора ЛАТРа (рис. 3.27) установить напряжение U на входе цепи порядка 20 ÷ 25 В, контролируя его цифровым вольтметром V (прибор ЩП02М, установленный слева на панели стенда – рис. 4.26). Следует поддерживать установленное напряжение постоянным во всех опытах с помощью ЛАТРа.

7. В процессе исследования цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов провести 9 опытов с различной емкостью батареи конденсаторов (величины емкостей для каждого опыта указаны в табл. 3.5) нажатием соответствующих кнопок выключателей на панели №4 стенда (рис. 3.28), постепенно увеличивая емкость с 40 мкФ до 200 мкФ. Перед подключением дополнительных конденсаторов в каждом опыте нужно обязательно отключить исследуемую цепь от источника питания (выхода ЛАТРа), переведя выключатели (S1, S’1) в нижнее положение «откл», а перед проведением замеров вновь подключить к напряжению питания цепь с помощью тех же выключателей.

Читайте также:  Работа переключателя напряжения трансформатора

8. Во всех опытах измерить входное напряжение U, потребляемую активную мощность Р и протекающий по цепи ток I, соответственно цифровыми измерительными приборами: вольтметром V, ваттметром W и амперметром А (см. принципиальную схему на рис. 3.24 и панель стенда на рис. 3.26).

9. Напряжение на батарее конденсаторов UС и напряжение на катушке индуктивности UК с параметрами RK, LK измерить цифровыми вольтметрами, соответственно VC и VK, установленными на панели стенда (см. рис. 3.26).

10. Полученные результаты измерений каждого опыта занести в таблицу 3.5.

11. В конце измерительной части данной работы нужно отключить исследуемую цепь от источника питания и сам блок питания от силового щитка с помощью выключателей S1 и S1 ‘ на панели с мнемосхемой (рис. 3.26) и красной кнопки «выкл» выключателя на панели блока питания (рис. 3.27). Сообщить преподавателю об окончании измерений и приступить к вычислениям параметров цепи.

Источник

Резонанс напряжений

date image2014-02-24
views image1788

facebook icon vkontakte icon twitter icon odnoklasniki icon

В последовательной цепи переменного тока с активным, индуктивным и емкостным сопротивлениями, в зависимости от соотношений XLи XC, можно выделить три характерных режима ее работы при: XL>XC, XL

Хотя, при резонансе напряжений, напряжения ULи UCне оказывают влияния на величину тока в цепи, эти напряжения существуют и могут значительно превышать напряжениеU, приложенное к зажимам цепи, что и предопределило название этого явления.Действительно

Отсюда видно, что при резонансе напряжений, напряжения на индуктивном или емкостном сопротивлениях во столько раз больше напряжения, приложенного к зажимам цепи, во сколько раз индуктивное или емкостное сопротивление больше активного сопротивления цепи.

Резонанс напряжений можно вызвать двумя способами:

а) изменением емкости конденсаторной батареи;

б) изменением частоты питающего тока.

а) Если постепенно увеличивать емкость конденсаторной батареи от нуля до некоторого конечного значения, то емкостное сопротивление будет уменьшаться, а токв цепи возрастать, в соответствии с выражением (2.25), и достигнет наибольшего значения при такой емкости Ср, когда XС окажется равным XL. Дальнейшее увеличение емкости приводит к снижению тока. Сказанное можно проиллюстрировать графиком (рис. 2.15).

Рис. 2.15. К определению резонанса напряжений.

б) Из условия резонанса напряжений следует , откуда илиfр , где fр– резонансная частота тока.

Сказанное иллюстрируется графиком (рис. 2.16).

Рис. 2.16. К определению резонансной частоты питающего тока

2.7. Цепь переменного тока с параллельным соединением активного, индуктивного и ёмкостного сопротивлений

(параллельная R-L-C цепь).

Рассмотрим цепь переменного тока, состоящую из двух ветвей, в первую из которых включены активное сопротивление R1и индуктивное сопротивление XL, а во вторую – активное сопротивление R2 и емкостное сопротивление XC(рис. 2.17).Обе ветви оказываются включенными под одним и тем же напряжением U, равным напряжению, приложенному к зажимам цепи.

Рис. 2.17Схема переменного тока с параллельным

Под действием напряжения в неразветвленной части цепи возникает ток i , который распределяется по двум параллельным ветвям, обратно пропорционально их сопротивлениям.

Составим по первому закону Кирхгофа уравнение мгновенных значений токов

В действующих значениях токов уравнение принимает вид:

Ток первой ветви , соответственно равны:

Ток второй ветви соответственно равны:

Ток в неразветвленной части цепи можно определить графически, путем построения векторной диаграммы (рис. 2.18). При параллельном соединении R,XL, XC в качестве базисного вектора выбирается вектор напряжения, т.к. он одинаков для всех ветвей схемы. Относительно этого вектора откладываются вектора токов .

Рис. 2.18. Векторная диаграмма цепи переменного тока с параллельным соединением R, XL, XC.

Активные и реактивные составляющие токов в ветвях определяются как

Активная составляющая общего тока в цепи равна арифметической сумме активных составляющих токов ветвей:

Реактивная составляющая общего тока в цепи равна алгебраической сумме реактивных составляющих токов в ветвях:

В результате получается треугольник токов АВС (рис. 2.18), из которого получим:

В общем виде, в параллельных цепях переменного тока величина тока в неразветвленной части цепи определяется по формуле:

Кроме того, из треугольника токов можно получить следующие соотношения:

Активная мощность цепи с параллельным соединением определяется как арифметическая сумма активных мощностей ветвей:

Реактивная мощность цепи определяется как алгебраическая сумма реактивных мощностей ветвей:

Источник

Adblock
detector