Меню

Как понизить напряжение транзистором схема

Как понизить напряжение?

За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.

В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос, как понизить напряжение, следует рассматривать в ключе каждого из них отдельно.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Понижение напряжения переменного тока

Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.

К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.

С помощью трансформатора

Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:

  • С выводом от средней точки – могут выдавать разность потенциалов как 220В, так и в два раза меньшее – 127В или 110В. От него вы сможете взять установленный номинал на те же 110В со средней точки. Это заводские изделия, которые массово устанавливались в старых советских телевизорах и других приборах. Но у этой схемы преобразователя имеется существенный недостаток – если нарушить целостность обмотки ниже среднего вывода, то на выходе трансформатора получится номинал значительно большей величины.

Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать.

Читайте также:  При каком напряжении открываются форсунки

Наиболее актуальными параметрами у трансформаторов являются:

  • Мощность – трансформатор должен не только соответствовать, подключаемой к нему нагрузке, но и превосходить ее, хотя бы на 10 – 20%. В противном случае максимальный ток приведет к перегреву обмоток трансформатора и дальнейшему выходу со строя.
  • Номинал напряжения – выбирается и для первичной, и для вторичной цепи. Оба параметра одинаково важны, так как, выбрав модель с входным напряжением на 200 или 190В, на выходе вы при питании от 220В получится пропорционально большая величина.
  • Защита от поражения электротоком – все обмотки и выводы от них должны обязательно иметь достаточную изоляцию и защиту от прикосновения.
  • Класс пыле- влагозащищенности – определяет устойчивость оборудования к воздействию окружающих факторов. В современных приборах обозначается индексом IP.

Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.

С помощью резистора

Для понижения напряжения в цепь нагрузки последовательно включается делитель напряжения в виде активного сопротивления.

Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:

  • величины напряжения;
  • сопротивления нагрузки;
  • мощности источника.

Если вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:

  • R – сопротивление резистора;
  • R Н – сопротивление прибора нагрузки;
  • I – ток, который должен обеспечиваться в номинальном режиме прибора;
  • U C – напряжение в сети.

После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.

Источник



Стабилизатор напряжения на транзисторах

Стабилизатор на одном стабилитроне

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы. Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – полупроводниковый прибор обладающий свойством стабилизации напряжения. В отличии от обычного диода работает в обратной полярности (на катод подается плюс), в режиме лавинного пробоя. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Конденсатор нужен для сглаживания пульсаций по напряжению, называется он фильтрующим. Резистор нужен для сглаживания пульсаций по току и называется он гасящим. Стабилитрон стабилизирует напряжение на нагрузке. Для нормальной работы данной схемы напряжение питания должно быть больше 40…50 %. Стабилитрон следует подобрать под нужное нам напряжение и ток.

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

Принцип работы стабилизатора на одном транзисторе

Цепочка из R1 и VT1 нам уже знакома из предыдущей схемы, это простейший стабилизатор, он задает стабилизированное напряжение на базе транзистора VT2. Транзистор в свою очередь выполняет функцию усилителя тока и является управляющим элементом в этой схеме. Например, при повышении входного напряжения, выходное напряжение будет стремится к возрастанию. Это приводит к понижению напряжения на эмиттерном переходе транзистора VT2, что приводит к его закрытию. При этом падение напряжения на участке эмиттер – коллектор возрастает на столько, что напряжение на стабилитроне уменьшается до исходного уровня. При понижении напряжения стабилизатор реагирует в обратном порядке.

Стабилизатор на транзисторах с защитой от КЗ

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

Читайте также:  Что делать если сгорели все бытовые приборы при скачке напряжения

Как видим в данную схему добавлен транзистор V4, диоды V6 и V7, и параметрический стабилизатор состоящий из резистора R1, диодов V2, V3 оснащен переключателем S2.

Принцип работы защиты стабилизатора

Данная схема рассчитана на ток срабатывания от КЗ 250…300 мА, пока он не превышен, ток будет проходить через делитель напряжения состоящий из диода V7 и резистора R3. Путем подбора данного резистора можно регулировать порог срабатывания защиты. Диод V6 при этом будет закрыт и никакого влияния на работы оказывать не будет. При срабатывании защиты диод V7 закроется, а диод V6 откроется и зашунтирует подключений стабилитрон, при этом транзисторы V4 и V5 закроются. Ток на нагрузке упадет до 20…30 мА. Транзистор V5 следует устанавливать на теплоотвод.

Стабилизатор с регулируемым выходным напряжением

В ремонте или наладке электронных устройств необходимо иметь блок питания с регулируемым выходным напряжением. Принципиальная схема стабилизаторы с регулировкой по напряжению представлена ниже.

Принцип работы стабилизатора с регулировкой напряжения

Параметрический стабилизатор состоящий из R2 и V2 стабилизируют напряжение на переменном резисторе R3. Напряжение с этого резистора поступает на управляющий транзистор. Этот транзистор включен по схеме эмиттерного повторителя, нагрузкой которого является резистор R4. Напряжение с резистора R4 подается на регулирующий транзистор V4, нагрузкой которого уже выступает наше питаемое устройство. Регулировка напряжения осуществляется переменным резистором R3, если движок резистора находится в минимальном положении по схеме, то напряжения для открытия транзисторов V3 и V4 недостаточно и на выходе будет минимальное напряжение. При вращении движка, транзисторы начинают открываться, что увеличивает напряжение на нагрузке. При увеличении тока нагрузки, падение напряжения на резисторе R1 и лампа Н1 начинает загораться, при токе в 250 мА наблюдается тусклое свечение, а при токе в 500мА и выше яркое. Транзистор V4 следует устанавливать на теплоотвод. При повышенной нагрузке более 500 мА, следует как можно быстрее выключить блок питания, так как при длительной максимальной нагрузке выходят из строя диоды в выпрямительном мостике и транзистор V4.

Данные схемы при правильной сборке не нуждаются в наладке. Также их можно модернизировать на более большой ток и напряжения. Путем подбора радиоэлементов с нужными нам параметрами.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Источник

Мощный стабилизатор напряжения на полевом транзисторе

Очень часто для питания различных электронных устройств требуются напряжения разной величины — например, чувствительные микроконтроллеры могут питаться (в зависимости от конкретного экземпляра) только строго от 5В, другим микросхемам бывает нужно напряжение 9-12В, а есть и совсем низковольтные устройства, которые требуют уровня питания 3-3,3В. Для повышения напряжения, например, чтобы получить из 3,7В литий-ионного аккумулятора целых 9-12В используются импульсные источники питания — в них напряжение повышается за счёт использования явления самоиндукции в катушке индуктивности. Понижающие же преобразователи можно поделить на два типа: те же импульсные и линейные. Первые обладают высоким КПД, но имеют несколько более сложную схемотехнику с применением индуктивностей и специальных ШИМ-контроллеров. Линейные актуальны в том случае, если нужна простота, миниатюрность и отсутствие каких-либо помех на выходе — ведь линейные стабилизаторы, в отличие от импульсных, наоборот уменьшают пульсации напряжения, в отличие от импульсных, которые их наоборот генерируют за счёт высокой частоты работы. И если импульсные стабилизаторы, как повышающие, так и понижающие, очень удобно использовать в виде готовых модулей, которые по небольшим ценам продаются на Али, то вот линейные стабилизаторы имеет смысл изготавливать своими руками, под заданные параметры.

Существуют специальные микросхемы стабилизаторов, например, серия 78lхх, они имеют на выходе фиксированные значения напряжения, либо LM317, микросхема в корпусе ТО-220, которая позволяет регулировать напряжение на выходе в широких пределах. Казалось бы, зачем выдумывать что-то ещё, если можно просто взять готовую LM317 — но не так всё просто, ведь она имеет один недостаток — выходной ток всего 1,5А. Конечно, этого достаточно для большинства применений линейного стабилизатора, тем более, что уже даже на таком токе он будет сильно нагреваться, но всё же иногда может возникнуть использовать именно мощный линейный стабилизатор с током более 1,5А, например, для подачи стабилизированного питания на аудио-усилитель. Использовать для питания усилителей импульсные источники — не самый лучший вариант по той причине, что помехи от импульсного источника в последствии будут попадать и в звуковой тракт, что явится в виде постороннего шума в звуке. Сделать мощный линейный стабилизатор можно разными путями, например, по схеме, представленной ниже — и использованием мощного полевого транзистора в качестве силового элемента и микросхему TL431 в качестве регулирующего. Такая схема обеспечивает хорошую стабильность выходного напряжения — как пишет автор, напряжение на выходе изменяется лишь на доли вольта в течение большого промежутка времени, а мощный полевой транзистор обеспечивает максимальный ток через нагрузку в 10А и рассеиваемую мощность в 50Вт — при использовании радиатора соответствующих размеров. Схема такого стабилизатора представлена на картинке ниже.

Читайте также:  Схема смещения фиксированным напряжением базы

Данные номиналы делителя, указанные на схеме, позволят регулировать напряжение на выходе в диапазоне от 3 до 27В, чего достаточно для большинства применений, но при необходимости этот диапазон можно менять в большую или меньшую сторону, подбирая общее сопротивление переменного резистора RV1. Здесь можно использовать либо полноценный переменный резистор с удобной ручкой для регулировки, либо небольшой подстроечный, например, такие, как на фото ниже. Также имеет смысл установить сюда многооборотный подстроечный резистор, он позволит устанавливать выходное напряжение с высокой точностью.

Конденсатор С3 служит для фильтрации помех в регулировочной части, для большей стабильности выходного напряжения, а С2 — фильтрующий на выходе. Его ёмкость на схеме указана как 22 мкФ, не стоит превышать это значение, слишком большая ёмкость на выходе может привести к неправильной работе схемы, для подавления пульсаций лучше установить большую ёмкость на входе стабилизатора. Для наглядности ниже приведено изображение все трёх электролитических конденсаторов, необходимых для сборки схемы. Обратите внимание, что все они имеют полярность и при впаивании их на плату важно её не перепутать, на схеме минусовые контакты конденсаторов помечены в виде заштрихованной обкладки, а на самих корпусах минусовой вывод отмечен в виде вертикальной полоски. Несоблюдение полярности электролитических конденсаторов обычно приводит к тому, что они начинают быстро разогреваться, а если вовремя не отключить питание от схемы, то вовсе взрываются, разбрасывая вокруг ошмётки бумаги.

Транзистор на схеме можно применить, например, один из следующих вариантов — IRLZ24/32/44, либо аналогичные им. Ключевыми параметрами здесь являются максимальное напряжение и ток через транзистор.

Схема собирается на небольшой печатной плате, рисунок которой для открытия в программе Sprint Layout представлен в архиве в конце статьи, изготовить плату можно методом ЛУТ.

Как можно увидеть, плата имеет довольно миниатюрные размеры, а потому её без труда можно встроить внутрь какого-либо устройства, того же усилителя. Транзистор не спроста стоит на краю плату спинкой в сторону — его необходимо установить на массивный радиатор. Чем больше будут токи, протекающие через стабилизатор, тем сильнее будет нагреваться транзистор, соответственно и большего размера потребуется радиатор. Не лишним будет и активное охлаждение с помощью кулера в особых случаях. Расчёт рассеиваемой на транзисторе мощности достаточно прост — нужно лишь умножить разницу в вольтах между входным напряжением и выходным и умножить её на ток, протекающий в цепи — в результате получится мощность в ваттах. Обратите внимание, что она не должна превышать 50Вт, иначе транзистор может не справится с таким большим тепловыделением.


Готовая плата будет иметь такой вид, как на картинках выше. Для подключения проводов весьма удобно использовать винтовые клеммники.

Таким образом, получился весьма простой и мощный стабилизатор, который обязательно найдёт себе применение в радиолюбительском деле. Удачной сборки! Все вопросы и дополнения пишите в комментариях.

Источник

Adblock
detector