Меню

Как определить развиваемую мощность двигателя физика

Физика

Скорость совершения работы характеризуется мощностью.

Различают среднюю и мгновенную мощность.

Средняя мощность определяется формулой

где A — работа, совершаемая за время ∆ t .

Для вычисления средней мощности также пользуются формулой

N = ( F → , 〈 v → 〉 ) = F → ⋅ 〈 v → 〉 = F 〈 v 〉 cos α ,

где F → — сила, совершающая работу; 〈 v → 〉 — средняя скорость перемещения; α — угол между векторами F → и 〈 v → 〉 .

В Международной системе единиц мощность измеряется в ваттах (1 Вт).

Мгновенная мощность определяется формулой

где A ′( t ) — производная от функции работы по времени.

Для вычисления мгновенной мощности также пользуются фор­мулой

N = ( F → , v → ) = F → ⋅ v → = F v cos α ,

где F → — сила, совершающая работу; v → — мгновенная скорость перемещения; α — угол между векторами F → и v → .

Пример 20. Тело массой 60 г к моменту падения на Землю имеет скорость 5,0 м/с. Определить мощность силы тяжести в этот момент.

Решение. На рисунке показаны направления скорости тела и силы тяжести, действующей на тело.

В задаче задана мгновенная скорость тела; следовательно, мощность, которую необходимо рассчитать, также является мгновенной мощностью. Величина мгновенной мощности силы тяжести определяется формулой

где mg — модуль силы тяжести; m — масса тела; g — модуль ускорения свободного падения; v — модуль скорости тела; α = 0° — угол между векторами скорости и силы.

N = 60 ⋅ 10 − 3 ⋅ 10 ⋅ 5,0 ⋅ 1 = 3,0 Вт.

Пример 21. При скорости 36 км/ч мощность двигателя автомобиля равна 2,0 кВт. Считая, что сила сопротивления движению автомобиля со стороны воздуха и дороги пропорциональна квадрату скорости, определить мощность двигателя при скорости 72 км/ч.

Решение. Мощность двигателя автомобиля определяется силой тяги и скоростью:

N * = F тяги v cos α ,

где F тяги — величина силы тяги двигателя автомобиля; v — модуль скорости автомобиля при заданной мощности; α = 0° — угол между векторами силы тяги и скорости.

Силы, действующие на автомобиль, направление его скорости и выбранная система координат показаны на рисунке.

Для определения величины силы тяги запишем второй закон Ньютона с учетом того, что автомобиль движется с постоянной скоростью:

F → тяги + F → сопр + m g → + N → = 0 ,

или в проекциях на координатные оси —

O x : F тяги − F сопр = 0 ; O y : N − m g = 0, >

где F сопр — модуль силы сопротивления движению автомобиля; N — модуль силы нормальной реакции, действующей на автомобиль со стороны дороги; m — масса автомобиля; g — модуль ускорения свободного падения.

Из первого уравнения системы следует равенство модулей сил тяги и сопротивления:

По условию задачи сила сопротивления пропорциональна квадрату скорости автомобиля:

где k — коэффициент пропорциональности.

Подстановка данного выражения в формулу для силы тяги

а затем в формулу для вычисления мощности дает:

N * = k v 3 cos α .

Таким образом, мощность двигателя автомобиля определяется формулой:

  • при скорости v 1 —

N 1 * = k v 1 3 cos α ;

  • при скорости v 2 —

N 2 * = k v 2 3 cos α ,

где v 1 = 36 км/ч — первая скорость автомобиля; v 2 = 72 км/ч — вторая скорость автомобиля.

N 1 * N 2 * = k v 1 3 cos α k v 2 3 cos α = ( v 1 v 2 ) 3

позволяет вычислить искомую мощность автомобиля:

N 2 * = N 1 * ( v 2 v 1 ) 3 = 2,0 ⋅ 10 3 ⋅ ( 72 36 ) 3 = 16 ⋅ 10 3 Вт = 16 кВт.

Пример 22. Два автомобиля одновременно трогаются с места и движутся равноускоренно. Массы автомобилей одинаковы. Во сколько раз средняя мощность первого автомобиля больше средней мощности второго, если за одно и то же время первый автомобиль развивает скорость вдвое большую, чем второй? Сопротивлением движению пренебречь.

Решение. Мощность двигателей автомобилей определяется фор­мулой:

  • для первого автомобиля

N 1 * = F тяги 1 v 1 cos α ,

  • для второго автомобиля

N 2 * = F тяги 2 v 2 cos α ,

где F тяги1 — величина силы тяги двигателя первого автомобиля; v 1 — модуль скорости первого автомобиля; F тяги2 — величина силы тяги двигателя второго автомобиля; v 2 — модуль скорости второго автомобиля; α = 0° — угол между векторами силы тяги и скорости.

Читайте также:  Измерительные устройства измерители мощности принцип действия

Силы, действующие на первый и второй автомобиль, направление движения и выбранная система координат показаны на рисунке.

Для определения величины силы тяги запишем второй закон Ньютона с учетом того, что автомобили движутся равноускоренно:

  • для первого автомобиля

F → тяги 1 + m 1 g → + N → 1 = m 1 a → 1 ,

или в проекциях на координатные оси —

O x : F тяги 1 = m 1 a 1 ; O y : N 1 − m 1 g = 0, >

  • для второго автомобиля

F → тяги 2 + m 2 g → + N → 2 = m 2 a → 2 ,

или в проекциях на координатные оси —

O x : F тяги 2 = m 2 a 2 ; O y : N 2 − m 2 g = 0, >

где m 1 — масса первого автомобиля; m 2 — масса второго автомобиля; g — модуль ускорения свободного падения; N 1 — модуль силы нормальной реакции, действующей на первый автомобиль со стороны дороги; N 2 — модуль силы нормальной реакции, действующей на второй автомобиль со стороны дороги; a 1 — модуль ускорения первого автомобиля; a 2 — модуль ускорения второго автомобиля.

Из записанных уравнений следует, что величины сил тяги первого и второго автомобиля определяются формулами:

  • для первого автомобиля

F тяги1 = m 1 a 1 ,

  • для второго автомобиля

F тяги2 = m 2 a 2 .

Отношение модулей сил тяги ( F тяги1 / F тяги2 ) определяется отношением

F тяги 1 F тяги 2 = m 1 a 1 m 2 a 2 .

Движение автомобилей происходит равноускоренно без начальной скорости, поэтому их скорость с течением времени изменяется по законам:

  • для первого автомобиля
  • для второго автомобиля

Отношение модулей скоростей ( v 1 / v 2 ) определяется отношением величин ускорений ( a 1 / a 2 ):

v 1 v 2 = a 1 a 2 ,

а отношение мощностей —

N 1 * N 2 * = F тяги 1 v 1 cos α F тяги 2 v 2 cos α = F тяги 1 F тяги 2 v 1 v 2 .

Подставим в полученное отношение выражения для ( F тяги1 / F тяги2 ) и ( v 1 / v 2 ):

N 1 * N 2 * = m 1 a 1 m 2 a 2 a 1 a 2 = m 1 m 2 ( a 1 a 2 ) 2 .

Преобразование формулы с учетом равенства масс автомобилей ( m 1 = m 2 = m ) и замены ( a 1 / a 2 = v 1 / v 2 ) дает искомое отношение мощностей:

N 1 * N 2 * = ( v 1 v 2 ) 2 = ( 2 v 2 v 2 ) 2 = 2 2 = 4 .

Таким образом, мощность первого автомобиля в 4 раза больше мощности второго автомобиля.

Источник



Все Формулы

Все Формулы по Физике здесь

  • Механика
  • Оптика
  • Колебания и волны
  • Термодинамика
  • Молекулярная физика
  • Электричество и магнетизм
  • Атомная и ядерная физика
  • Квантовая физика
  • Специальная Теория Относительности
  • Все формулы по Физике
  • Формулы по физике за 7 класс
  • Формулы по физике за 8 класс
  • Формулы по физике за 9 класс
  • Формулы по физике 10 класс
  • Новости науки, физики и не только

Формула определения мощности

Мощность — выражается как отношению работы, выполняемой за некоторый промежуток времени, к промежутку времени

\[\LARGE N=\frac< A data-lazy-src=

Формула показывает связь между мощностью и скоростью при равномерном движении. Так же формула справедлива и для переменного движения, если под N понимать мгновенную мощность, а под V — мгновенную скорость). Если направление силы совпадает с направлением перемещения, то cos\alpha =1 и N=Fv.Тогда следует, что

\[F=\frac<N data-lazy-src=

Работа, мощность, КПД

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

Читайте также:  Тепловоз развивая мощность 600 квт равномерно движется со скоростью

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

\[ \large \boxed < A = \left| \vec\right| \cdot \left| \vec \right| \cdot cos(\alpha) >\]

\( F \left( H \right) \) – сила, перемещающая тело;

\( S \left( \text <м>\right) \) – перемещение тела под действием силы;

\( \alpha \) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом \(A\) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

\( E_ \left(\text <Дж>\right) \) – начальная кинетическая энергия машины;

\( E_ \left(\text <Дж>\right) \) – конечная кинетическая энергия машины;

\( m \left( \text<кг>\right) \) – масса автомобиля;

\( \displaystyle v \left( \frac<\text<м>>\right) \) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

\[ \large E_ = 1000 \cdot \frac<1^<2>> <2>= 500 \left(\text <Дж>\right) \]

\[ \large E_ = 1000 \cdot \frac<10^<2>> <2>= 50000 \left(\text <Дж>\right) \]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

\[ \large \Delta E_ = E_ — E_ \]

\[ \large \Delta E_ = 50000 – 500 = 49500 \left(\text <Дж>\right) \]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

\( E_ \left(\text <Дж>\right) \) – начальная потенциальная энергия яблока;

\( E_ \left(\text <Дж>\right) \) – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

\[ \large E_

= m \cdot g \cdot h\]

\( m \left( \text<кг>\right) \) – масса яблока;

\( h \left( \text<м>\right) \) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

\[ \large E_ = 0,2 \cdot 10 \cdot 3 = 6 \left(\text <Дж>\right) \]

Потенциальная энергия яблока на столе

\[ \large E_ = 0,2 \cdot 10 \cdot 1 = 2 \left(\text <Дж>\right) \]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

\[ \large \Delta E_

= E_ — E_ \]

\[ \large \Delta E_

Читайте также:  Насос для скважины подбор мощности

= 2 – 6 = — 4 \left(\text <Дж>\right) \]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

\) дополнительно допишем знак «минус».

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы \(\displaystyle F_<\text<тяж>>\) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы \(\displaystyle F_<\text<тяж>>\) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ \(\vec\) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

\[ \large A = \Delta E_ \]

\[ \large A = \Delta E_

\]

\[ \large A = F \cdot S \cdot cos(\alpha) \]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

\[ \large P = \left( \vec , \vec \right) \]

Формулу можно записать в скалярном виде:

\[ \large P = \left| \vec \right| \cdot \left| \vec \right| \cdot cos(\alpha) \]

\( F \left( H \right) \) – сила, перемещающая тело;

\( \displaystyle v \left( \frac<\text<м>> \right) \) – скорость тела;

\( \alpha \) – угол между вектором силы и вектором скорости тела;

Когда векторы \(\vec\) и \(\vec\) параллельны, запись формулы упрощается:

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД – коэффициент полезного действия. Обычно обозначают греческим символом \(\eta\) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент \(\eta\) для какого-либо устройства, механизма или процесса.

\( \large A_<\text<полезная>> \left(\text <Дж>\right)\) – полезная работа;

\(\large A_<\text<вся>> \left(\text <Дж>\right)\) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

Величина \(\eta\) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

Источник

Adblock
detector