Как находить токи методом узлового потенциала

Метод узловых потенциалов

Введение

Расчет параметров линейных электрических цепей

Вариант R1 R2 R3 R4’ R4’’ R5 R6’ R6’’ E2 E3 I2 I3
6,5 2,5 5,5 0,4

Замена схемы эквивалентной(упрощённой)

Упростим схему, заменив последовательно и параллельно соединённые резисторы четвёртой и шестой ветвей эквивалентными, заменим источники тока на эквивалентные источники ЭДС. Дальнейший расчёт будем вести для упрощённой схемы (Рис 2.2).

Идеальный источник тока J3 можем исключить из цепи, так-как J3=0

Вариант R1 R2 R3 R4 R5 R6 E’2 E3
Ом В
6,5 2,5 5,5 7,5

Расчёт токов методом Кирхгофа

Выберем направления токов в ветвях схемы произвольно (Рис 2.3)

Количество уравнений необходимых по законам Кирхгофа

· по первому закону n1=У-1=4-1=3

· по второму закону n2=К=3

· общее количество n=n1+n2=3+3=6

Выбрав направление обхода по часовой стрелке во 2 контуре и против часовой в 1 и 3 , составляем уравнения:

По первому закону Кирхгофа

· для узла “a” : + =0

· для узла “b” : =0

· для узла “c” : =0

По второму закону Кирхгофа:

· для контура “III” : * * * =

Подставив значения сопротивлений и решив систему линейных алгебраических уравнений методом Гаусса, получим значения искомых токов в цепи. (Рис2.4).

Метод контурных токов

Выберем направления контурных токов произвольно (Рис 2.5)

Число уравнений, которые необходимо составить для расчёта токов в ветвях схемы, всегда равно числу независимых контуров. В данной схеме три независимых контура, поэтому имеем следующую систему:

· – контурные токи первого, второго и третьего контуров соответственно(необходимо определить)

· – суммарные сопротивления первого, второго и третьего контуров соответственно

· – алгебраическая сумма ЭДС соответственно первого, второго и третьего контуров, причём если ЭДС совпадает с направлением контурного ток, то ЭДС берётся со знаком “+”, а если не совпадает, то со знаком “-”.

Сопротивления с одинаковыми индексами — это собственные сопротивления контуров, равные сумме всех сопротивлений входящих в контур. Сопротивления с разными индексами — это взаимные сопротивления, входящие одновременно в состав двух контуров, причем знак взаимного сопротивления берется положительным, если направления контурных токов на нем совпадают, и отрицательным, если нет.

Подставим найденные значения в систему уравнений:

Решая эту систему методом Гаусса (Рис 2.6) , находим контурные токи

Где x 1; x 2; x 3 являются значениями контурных токов.

Далее выразим истинные токи через контурные. Ток в ветви ,принадлежащей двум или нескольким контурам, равен алгебраической сумме соответствующих контурных токов. Со знаком “+” берутся контурные токи, совпадающие с током этой ветви, со знаком “ ”не совпадающие с ним.

Метод узловых потенциалов

Выберем в качестве базисного узел “a” и его потенциал приравняем к нулю

Остаются неизвестными потенциалы узлов “b” , “c” и “d”

Рассчитаем собственные проводимости ветвей:

По первому закону Кирхгофа

Выразим токи через разность потенциалов и собственную проводимость

G – собственная проводимость ветви

Подставив эти значения в систему с учётом того, что

Найдём потенциалы узлов, решив данную систему методом Гаусса (Рис 2.7):

2.5 Определение тока методом эквивалентного генератора

Используя метод эквивалентного генератора, выделяем ветвь « d-a » в схеме,

(Рис 2.2) .Всю цепь относительно ветви с сопротивлением , представим эквивалентным генератором с источником ЭДС равным и сопротивлением (Рис 2.8).

Согласно схеме (Рис 2.8) интересующий ток в ветви определиться как

,т.е. решение задачи сводится к определению двух параметров эквивалентного генератора и

Найдем ЭДС генератора. По определению равно напряжению между узловыми точками d и a разомкнутой ветви с сопротивлением (Рис 2.9)

Рассчитаем токи методом Кирхгофа .

Количество уравнений необходимых по законам Кирхгофа

· по первому закону n1=У-1=2-1=1

· по второму закону n2= У-1+1=1+1=2

· общее количество n=n1+n2=2+1=3

Выбрав направление обхода по часовой стрелке, составляем уравнения:

Подставив значения из таблицы 2.2 в данное уравнение, находим токи, решив его методом Гаусса. (Рис 2.10)

По второму закону Кирхгофа найдём

Внутреннее сопротивление эквивалентного источника равно входному сопротивлению относительно выводов « d-a » пассивного двухполюсника.

Входное сопротивление двухполюсника ( относительно выводов «d-a» определяется при устранении из схемы активного двухполюсника всех источников (ветви с источниками тока разрываются, а источники ЭДС в ветвях закорачиваются).

Перерисуем данную схему (Рис 2.11) заменив соединение треугольником резисторов , , на эквивалентное сопротивление звездой (Рис 2.12) , ,

Найдём значения сопротивлений , ,

Найдём входное сопротивление цепи

Нужные параметры найдены , находим ток

Видно, что полученное значение достаточно хорошо совпадает со значением полученным в пунктах 2.3, 2.4, 2.5

Результаты расчётов токов, проведённых в пунктах 2.3, 2.4, 2.5 сведём в таблицу

Законы Кирхгофа 0,8049 0,1719 0,9769 -0,2994 -0,4714 0,5054
Метод контурных токов 0,8049 0,1720 0,9769 -0,2994 -0,4715 0,5054
Метод узловых потенциалов 0,8049 0,1719 0,9769 -0,2994 -0,4714 0,5054

Как видно из таблицы расчёты, проведённые тремя способами , хорошо совпадают, а небольшие неточности обусловлены округлением промежуточных величин при вычислении токов этими методами.

Баланс мощностей

Составим баланс мощностей в исходной схеме, вычислив суммарную мощность источников и суммарную мощность нагрузок (сопротивлений)

Суммарная мощность источников

Суммарная мощность приёмников

Допускается расхождение баланса активных мощностей

Как видим баланс мощностей сходится, значит расчёт произведён верно.

Потенциальная диаграмма

Начертим потенциальную диаграмму контура bacfdeb (Рис 2.13)

Примем потенциал точки a равным нулю

При вычислении токов методом узловых потенциалов уже была найдена большая часть этих значений:

Источник

Метод узловых (потенциалов) напряжений

ads

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Источник

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).

Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).

Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.

Решение задач методом узловых потенциалов и методом двух узлов

Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов.

Решение. В рассматриваемой схеме четыре узла. Заземлим узел 4 (опорный узел)

φ 3 = φ 4 + E 2 = 200 B .

Необходимо найти потенциалы узлов 1 и 2. Составим систему уравнений по методу узловых потенциалов для узлов 1 и 2.

Рассматривая узел 1, получим

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 − φ 3 ⋅ g 13 = J + E 1 R 1 + R ′ 1

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 = J + E 1 R 1 + R ′ 1 + E 1 ⋅ g 13 .

В правой части этого уравнения оба слагаемых учтены со знаком плюс, так как J и E1 направлены к узлу 1.

Рассматривая узел 2 (правая часть уравнения равна нулю, так как в ветвях, подсоединенных к узлу 2, нет источников энергии), получим

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 − φ 3 ⋅ g 23 = 0

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 = E 2 ⋅ g 23 .

Найдем собственную проводимость первого узла

g 11 = 1 R 6 + 1 R 1 + R ′ 1 + 1 R И Т + 1 R 2 + 1 R 5 = 1 20 + 1 25 + 1 25 + 1 40 = 0,155 С м .

Проводимость ветви с идеальным источником тока равна нулю, так как внутреннее сопротивление идеального источника тока RИТ равно бесконечности.

Собственная проводимость узла 2

g 22 = 1 R 2 + 1 R 3 + 1 R 4 = 1 25 + 1 30 + 1 35 = 0,102 С м .

Взаимные проводимости между узлами

g 13 = 1 R 6 + 1 R 1 + R ′ 1 = 1 20 + 1 25 = 0,09 С м ; g 21 = g 12 = 1 R 2 = 1 25 = 0,04 С м ; g 23 = 1 R 3 = 1 30 = 0,033 С м .

Подставив в уравнения известные величины, получим

Для решения этой системы используем метод определителей. Главный определитель системы

Δ = | 0,155 − 0,04 − 0,04 0,102 | = 0,01421.

Δ 1 = | 39 − 0,04 6,6 0,102 | = 4,242 ; Δ 2 = | 0,155 39 − 0,04 6,6 | = 2,583.

Находим потенциалы узлов

φ 1 = Δ 1 Δ = 4,242 0,01421 = 298,6 В ; φ 2 = Δ 2 Δ = 2,583 0,01421 = 181,8 В .

Определяем токи в ветвях (положительные направления токов в ветвях с ЭДС выбираем по направлению ЭДС, в остальных ветвях произвольно)

I 1 = φ 3 − φ 1 + E 1 R 1 + R ′ 1 = 200 − 298,6 + 150 10 + 15 = 2,056 А .

В числителе этого выражения от потенциала узла 3, из которого вытекает ток I1, вычитается потенциал узла 1, к которому ток подтекает. Если ЭДС ветви совпадает (не совпадает) с выбранным направлением тока, то она учитывается со знаком плюс (минус). В знаменателе выражения учитываются сопротивления ветви.

Аналогично определяем другие токи (направления токов указаны на схеме рис. 1.4.1)

I 1 = φ 3 − φ 1 R 6 = 200 − 298,6 20 = − 4,93 А ; I 2 = φ 1 − φ 2 R 2 = 298,6 − 181,8 25 = 4,67 А ; I 3 = φ 3 − φ 2 R 3 = 200 − 181,8 30 = 0,607 А ; I 4 = φ 2 − φ 4 R 4 = 181,8 − 0 35 = 5,194 А .

Для определения тока в ветви с идеальной ЭДС зададимся направлением тока I7. По первому закону Кирхгофа для узла 3 составим уравнение

− I 7 + I 3 + I 1 + I 6 = 0.

I 7 = I 3 + I 1 + I 6 = 0,607 + 2,056 − 4,98 = − 2,317 A .

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения.

1 Находим напряжение между двумя узлами по методу двух узлов

U a b = φ a − φ b = E 1 ⋅ g 1 + J g 1 + g 2 + g 3 = 32 ⋅ 1 1 + 18 1 1 + 1 6 + 1 2 = 30 B .

При составлении этого уравнения по методу двух узлов в числителе необходимо брать произведение ЭДС на проводимость своей ветви со знаком плюс, если ЭДС направлена к узлу a, и минус – если направлена от узла a к узлу b.

Аналогичное правило определяет и знаки токов источников тока.

2 Находим токи по закону Ома (по закону Ома для ветви с ЭДС)

I 1 = E 1 + φ b − φ a R 1 = E 1 − U a b R 1 = 32 − 30 1 = 2 А ; I 2 = U a b R 2 = 30 6 = 5 А ; I 3 = U a b R 3 = 30 2 = 15 А .

Правильность решения проверим по первому закону Кирхгофа

I 1 − I 2 + I 3 + J = 0 ; 2 − 5 − 15 + 18 = 0.

Источник

Метод узловых потенциалов

Метод узловых потенциалов – один из методов анализа электрической цепи, который целесообразно использовать, когда количество узлов в цепи меньше или равно числу независимых контуров. Данный метод основан на составлении уравнений по первому закону Кирхгофа. При этом, потенциал одного из узлов цепи принимается равным нулю, что позволяет сократить число уравнений до n-1.

Метод узловых потенциалов

1 – Для начала примем узел 4 за базовый и будем считать его потенциал равным нулю.

2 — Составим уравнения по первому закону Кирхгофа для узла 1,2,3 (для узла 4 не составляем, так как это не требуется)

Метод узловых потенциалов

3 – Используя обобщённый закон Ома составим уравнения для нахождения каждого из токов (за ϕi берем потенциал узла из которого ток выходит, а за ϕ потенциал узла в который ток входит) Gi – проводимость i-ой ветви.

Метод узловых потенциалов

4 – Подставим полученные выражения для токов в уравнения из пункта 2, получим

Метод узловых потенциалов

Данная система уравнений записана для цепи состоящей из 4 узлов, а для n узлов справедливо

Метод узловых потенциалов

Проводимости G11,G22 и т.д. – сумма проводимостей сходящихся в узле (собственные проводимости), всегда берутся со знаком плюс. Проводимости G12,G21 и т.д. проводимости ветвей соединяющих узлы (общие проводимости), всегда берутся со знаком минус.

Если источник тока или ЭДС направлен к узлу, то берем со знаком плюс, в противном случае со знаком минус.

5 – Решив систему уравнений из пункта 4 любым доступным способом, найдем неизвестные потенциалы в узлах, а затем определим с помощью них токи.

Метод узловых потенциалов

Правильность решения проверим с помощью баланса мощностей

Метод узловых потенциалов

Задача решена верно методом узловых потенциалов.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector