Меню

Ir2153 со стабилизацией напряжения

Простой, самодельный импульсный блок питания на IR2153 своими руками

Импульсный блок питания в руках

Инструкция по созданию универсального, простого импульсного блока питания на IR2153 своими руками. Представлена схема, более 40 пошаговых фото и детальные пояснения.

  1. Схема, необходимые компоненты
  2. Сборка своими руками
  3. Тестирование импульсного блока питания
  4. Видео о создании импульсного блока питания

Недавно мы говорили о создании лабораторного блока питания своими руками. Сегодня мы рассмотрим пошагово, как создать универсальный импульсный блок питания на микросхеме IR2153. В интернете полно схем БП на IR2153, но каждая из них имеет свои недостатки, а вот представленная схема — универсальная.

Схема импульсного блока питания на IR2153, необходимые компоненты

Как выглядит схема импульсного блока питания

Подробная схема импульсного БП

Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом можно сразу убить двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги.

Конденсаторы на схеме

Точка с напряжением на схеме

Плата с конденсаторами

Два конденсатора в руках

Если блока нет, то цены на пару таких конденсаторов ниже, чем на один высоковольтный. Емкость конденсаторов одинаковая и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.

Важно также учитывать следующее соответствие:

  • 150 Вт = 2х120 мкФ
  • 300 Вт = 2х330 мкФ
  • 500 Вт = 2х470 мкФ

Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что сэкономит место. Кроме того, напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250 В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.

Конденсаторы на 250В и на 600В в руках

Следующая особенность схемы — запитка для IR2153. Все, кто строил блоки на ней, сталкивались с сильным нагревом питающих резисторов.

Схема запитки для IR2153

Даже если их ставить от переменки, выделяется очень много тепла. Чтобы этого избежать, вместо резистора используем конденсатор. Это предотвратит нагрев элемента по питанию.

Место расположения конденсатора

Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.

Защита на схеме блока питания

Установка нового элемента на плату блока питания

Обратная сторона печатной платы для БП

После тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое нужно установить защиту. Если она не нужна, можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.

Расположение перемычки на схеме

Компоненты на плате, которые не нужно устанавливать

Ток защиты регулируется с помощью подстроечного резистора:

Подстроечный резистор на схеме

Номиналы резисторов шунта изменяются в зависимости от максимальной выходной мощности. Чем она больше, тем меньше нужно сопротивление. Например, для мощности до 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то лучше использовать резисторы на 0,2 Ом. При 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом. Данный блок не стоит собирать мощностью выше 600 Вт.

Также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц. Это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.

Принцип работы защиты отображён на схеме

Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее — от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.

Питание защелкивающегося варианта защиты

Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.

Диод Шоттки в руках

Если нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.

Расположение выходного конденсатора на 1000 мкФ

Как выглядит выходной конденсатор на 1000 мкФ

Также необходимо отметить и использование некоторых вспомогательных элементов в обвязке трансформатора:

Кроме того, не забываем об Y-конденсаторе между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.

Нельзя пропускать и частотозадающую часть схемы.

Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.

Резистор на схеме

Это конденсатор на 1 нФ, его номинал менять не советуем, а вот резистор задающей части можно установить подстроечный, на это есть свои причины. Первая из них — это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты.

Небольшой пример: допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26 В, а вам нужно 24 В. Меняя частоту, можно найти такое значение, при котором на выходе будут требуемые 24 В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и, вращая ручку резистора, добиваемся нужного сопротивления.

Расположение резистора с нужным сопротивлением

Установка нужного сопротивления на резисторе

Печатную плату для импульсного блока питания на IR2153 можно скачать ниже:

Импульсный блок питания на IR2153 — сборка своими руками

Сейчас вы можете видеть 2 макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.

Читайте также:  Корректор напряжения кн 3 инструкция по эксплуатации

Макетные платы в руках

Макетки сделаны для того, чтобы можно было заказать изготовление данной платы в Китае.

Демонстрация обратной стороны печатной платы

Технические компоненты на лицевой стороне платы

Тыльная сторона платы для импульсного блока питания

Вот плата уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне.

Указание на предохранители

Предохранитель зажат двумя пальцами

Далее видим конденсаторы фильтра.

Указание на конденсаторы фильтра

Их можно достать из старого блока питания компьютера. Дроссель наматываем на кольце т-9052, 10 витков проводом сечением 0,8 мм 2 жилы. Однако можно применить дроссель из того же компьютерного блока питания. Диодный мост — любой, с током не меньше 10 А.

Диодный мост в руке

Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой — по низкой.

Указание на резистор для разрядки ёмкости

Второй резистор для разрядки ёмкости

Ну и остается дроссель по низкой стороне, его мотаем 8–10 витков на таком же сердечнике, что и сетевой. Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.

Дроссель для платы

Тестирование самодельного импульсного блока питания на IR2153

Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.

Простая схема тестирования блока питания

Лампочка подключена к блоку питания

Если все работает в штатном режиме, то лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.

Искусственное создание короткого замыкания на блоке питания

Как видим, защита сработала, все хорошо. Теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.

Блок питания подключён к 2-м мультиметрам

Результат тестирования БП на 2-х Амперах

Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.

  • Смотрите также, как создать 6-вольтный БП на BQ24450

Итак, где использовать универсальный импульсный блок питания на IR2153? В блоках для DC-DC, для усилителей, паяльников, ламп, двигателей.

Видео о создании импульсного блока питания на IR2153 своими руками:

Источник



Ir2153 со стабилизацией напряжения

БЛОК ПИТАНИЯ НА IR2153 ИЛИ IR2155
СО СТАБИЛИЗАЦИЕЙ

Да, да, это не опечатка или провокация. Это действительно блок питания на IR2153 со стабилизированным выходным напряжением. Кроме этого данная схема может стабилизировать и ток, что делает данный блок питания весьма и весьма универсальным. Есть конечно некорые недостатки в данной конструкции, но это плата за простоту схемы.
Не большая пояснялка.
Идея регулировки выходного напряжения при помощи частоты не нова и тут я велосипед не изобрел. Еще пару лет назад я делал стабилизатор тока для мощных светодиодов, но во время пусконаладочных работ светодиоды погорели и топология этого блока питания была отложена.
Вернулся я к ней по причине изыскательских работ по созданию простого, дешевого и довольно надежного блока питания.
Нет, речь не идет о лабораторном блоке питания с регулировкой выходного напряжения от нуля до максимального значения. Речь идет имеено о блоке питания с фиксированным выходным напряжением с небольшим диапазоном регулировки. Т.е. этот преобразователь напряжения для питания какого устройства, а не проверочный источник напряжения.
Была попытка собрать резонансный блок питания на FSFR2100, но она закончилась крахом — два раза покупал эти микрухи на Али и обоа раза брак. Первые микросхемы прекрасно работали, отлично изменяли частоту на выходе, но что то внутри было не правильно и при питании выше 130 вольт они тупо затыкались. Вторая покупка работала на сетевом напряжении, но частота гуляла и естественно гуляло выходное напряжение. В общем не срослось.
Сама по себе IR2153 как бы не предназначена для стабилизации выходного напряжения, это микросхема для создания электронного балласта люминисцентных ламп и по сути является простым электронным трансформатором пропорционально изменяет выходное напряжение при изменении входного.
Однако в среде радиолюбителей эта микросхема завоевала популярность при создании блоков питания из за своей простоты, а моральная старость делает стоимость этой микросхемы довольно привлекательной.
Однако в этой микросхеме не предусмотренн ввод обратной связи, но она имеет внешние частотозадающие цепочки, следовательно на частоту преобразования можно влиять извне. Но чтобы влиять нужно изменять либо емкость конденсатора, либо сопротивление резистора, который используется именно как резистор, а не регулятор стабилизатора тока, как это сделано в TL494 или SG3525.
Варикапы могут менять свою емкость в зависимости от поданного напряжения, но их емкость очень мала и придется их ставить несколько штук. Да и не получится гальванически развязать первичную цепь от вторичной, а это уже сразу ставит крест на этой идее.
Остаются оптроны лампа-фоторезистор, но у лампы хоть не большая, но инерционность есть. Следовательно нужен оптрон светодиод-фоторезистор. На Али такие есть, но цену на них задрали уж слишком не обоснованную.
Остается собрать оптрон самому, скрестив обычный белый светодиод с фоторезистором:

Заготовки для изготовления оптрона

Для этого была использована термоусадочная трубка черного цвета диаметром 6 мм. Для увеличения затемненности трубка одеватеся в два слоя, торцы заливаются краской или герметиком.

Самодельный оптрон светодиод-фоторезистор

Тут следуте обратить внимание на одну вещь — для изготовления данного блока питания необходимо несколько светодиодов одного типа. Один светодиод потребуется для изготовления оптрона, а остальные для индикации режимов работы. Светодиоды необходимы одного типа, поскольку соединены последовательно и нужно исключить разность протекающего через светодиоды тока.
Первоначально была собрана схема для тестовых проверок и выяснения на сколько идея регулировка напряжения и тока с помощью изменения частоты работоспособна.

Читайте также:  Напряжение круг или квадрат

Сразу необходимо сказать, что приведенная принципиальная схема инвертора уже прошла тюнинг и имеет все необходимые элементы и номиналы, но не совсем пригодна для изготовления. универсального блока питания, поскольку имеет некоторые неудобства в организации обратной связи.
Дело в том, что светодиод оптрона запитывается с обратной связи по напряжению и току через логическое «ИЛИ» организованное диоды VD7 и VD8.
Но тут есть недостаток — не понятно по какой причине изменяется выходное напряжение да и подпорка светодиодов «снизу» ограничивает использование внешнего регулятора, если в нем вдруг возникнет необходимость.
Кроме этого возникла еще одна проблема — у величением частоты возрастает потребление самим драйвером — требуется больше энергии на открытие-закрытие силовых транзисторов. Из за увеличенного потребления увеличивается падение напряжения на токоограничивающих резисторах R1-R4 и напряжение питания самой микросхемы IR2153 уже не хватает и она самоблокируется.
Чтобы исключить эту ситуацию как раз и пришлось использовать 4 резистора по 91 кОм, т.е. финальное сопротивление равно почти 23 кОм. Причем выделение тепла на этих резисторах тоже вполне приличное — почти 4 Вт, т.е. эта гирлянда будет греться и довольно не плохо.

В этом варианте светодиод оптрона запитывается так же через логическое «ИЛИ», но в этот раз в качестве диодов выступают светодиоды VD1-VD3, каждый из которых индицирует режим работы.
VD1 — индикация того, что ограничение осуществляется по напряжению.
VD2 — индикация того, что регулировка происходит по току.
VD3 — индицирует о том, что выходное напряжение управляется от внешнего источника.
Так же в этом варианте изменено питание IR2153 — старт производится от резистора R2, а вот питание в рабочем режиме происходит через емкостной делитель С12. Такое решение позволяет избавится греющегося резистора токоограничения и получить изменяющееся от частоты сопротивление — реактивное сопротивление емкости уменьшается при увеличении частоты. Это позволяет сильно не беспокоится об изменяющемся потреблении при увеличении частоты — реактивное сопротивление С12 будет уменьшаться и компенсировать увеличивающееся потребление хотя бы частично. Для исключения перегрузки стабилитрона внутри микросхемы по питанию установлен отдельный стабилитрон VD5, который будет гасить излишки напряжения с емкостного делителя С12.
Есть еще одно отличие от первоначального варианта — в качестве силовых транзисторов использованы транзисторы на 20 ампер, а вместо IR2153 используется IR2155, у которой выходной ток больше, чем у IR2153.
О перегрузке самой IR2155 речь не идет хоть и транзисторы несколько тяжелее, но энегрия затвора остается не критичной — FQP20N60 — Qg — 74nC, резистор в затвор не более 10 Ом, STP20N65M5 — Qg 40 nC, в затвор резисторы не более 36 Ом, SPA20N60C3 и SPW20N60C3 — Qg 114 nC, эти самые тяжелые, в затвор не более 1 Ома.
Наладка данного блока питания традиционна — сначала подается питание от отдельного источника питания на саму IR2155, и проверяется частота преобразования. Она должна быть чуть больше 20 кГц.
Затем необходимо подать напряжение на светодиод VD3 и светодиод оптрона UH1, разумеется через токоограничивающий резистор — его нет на плате. При подаче напряжения на эту связку светодиодов частота преобразования должна превысить 200 кГц.
После этого снимает напряжение с управляющего светодиода и уже можно подать имитацию сетевого напряжение — на С2 нужно подать 30-60 вольт и убедится, что перегрузки не происходит. Разумеется, что на плате нужно запаять перемычку под дросселе рассеивания:

Источник

Как запустит IR2153 с стабилизацией.

Mamadrahim

Микросхема IR2153 специально разработано под двухтактному каскаду.Где-бы несмотрел схеми на этой микрухе, везде оно работает без цепи стабилизации. Меня давно интерисует один вопрос = можно-ли сделат стабилизацию хотя бы на 70%. Вот ниже один из схем,если здес потребител неменяемий по питанию,и толко сеть от 150 до 240в.Я сам думаю поступит так=на горячой стороне собрат отрицателний источник этак на 15в,подат это напряжение через оптопару на затвор нижнего мосфета.Собрат усилител ошибки на холодной стороне TL431 и нагрузит его на оптопару.Кто-нибудь подскажет интересную схему потом начну эксприментировать.Всем заранее спасибо.

___________2153_604.png

___________2153_146.png

Here.he

Mamadrahim, нет. Так регулировать не получится однонозначно.

Регулировать 555-таймер, а именно он в основе 215х, можно только по CT/RT

Ищи как регулировать ШИМ у 555, будет задействован «сброс» — в нашей схеме — затвор нижнего, но надо доработать до «сброс»

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Учитывайте, что некоторые неисправности являются не причиной, а следствием другой неисправности, либо не правильной настройки. Подробную информацию Вы найдете в соответствующих разделах.

Читайте также:  Проверка регулятора напряжения генератора тойота королла

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

Если у Вас есть свой вопрос по определению дефекта, способу его устранения, либо поиску и замене запчастей, Вы должны создать свою, новую тему в соответствующем разделе.

  • О прошивках

    Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

    На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

    • Прошивки ТВ (упорядоченные)
    • Запросы прошивок для ТВ
    • Прошивки для мониторов
    • Запросы разных прошивок
    • . и другие разделы

    По вопросам прошивки Вы должны выбрать раздел для вашего типа аппарата, иначе ответ и сам файл Вы не получите, а тема будет удалена.

  • Схемы аппаратуры

    Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    • Схемы телевизоров (запросы)
    • Схемы телевизоров (хранилище)
    • Схемы мониторов (запросы)
    • Различные схемы (запросы)

    Внимательно читайте описание. Перед запросом схемы или прошивки произведите поиск по форуму, возможно она уже есть в архивах. Поиск доступен после создания аккаунта.

  • Справочники

    На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

    • Справочник по транзисторам
    • ТДКС — распиновка, ремонт, прочее
    • Справочники по микросхемам
    • . и другие .

    Информация размещена в каталогах, файловых архивах, и отдельных темах, в зависимости от типов элементов.

    Marking (маркировка) — обозначение на электронных компонентах

    Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

    Package (корпус) — вид корпуса электронного компонента

    При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

    • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
    • SOT-89 — пластковый корпус для поверхностного монтажа
    • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
    • TO-220 — тип корпуса для монтажа (пайки) в отверстия
    • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
    • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
    • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

  • Краткие сокращения

    При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

    Сокращение Краткое описание
    LED Light Emitting Diode — Светодиод (Светоизлучающий диод)
    MOSFET Metal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
    EEPROM Electrically Erasable Programmable Read-Only Memory — Электрически стираемая память
    eMMC embedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
    LCD Liquid Crystal Display — Жидкокристаллический дисплей (экран)
    SCL Serial Clock — Шина интерфейса I2C для передачи тактового сигнала
    SDA Serial Data — Шина интерфейса I2C для обмена данными
    ICSP In-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
    IIC, I2C Inter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
    PCB Printed Circuit Board — Печатная плата
    PWM Pulse Width Modulation — Широтно-импульсная модуляция
    SPI Serial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
    USB Universal Serial Bus — Универсальная последовательная шина
    DMA Direct Memory Access — Модуль для считывания и записи RAM без задействования процессора
    AC Alternating Current — Переменный ток
    DC Direct Current — Постоянный ток
    FM Frequency Modulation — Частотная модуляция (ЧМ)
    AFC Automatic Frequency Control — Автоматическое управление частотой

    Частые вопросы

    После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

    Кто отвечает в форуме на вопросы ?

    Ответ в тему Как запустит IR2153 с стабилизацией. как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

    Как найти нужную информацию по форуму ?

    Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

    По каким еще маркам можно спросить ?

    По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

    Какие еще файлы я смогу здесь скачать ?

    При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

    Полезные ссылки

    Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

    Источник

  • Adblock
    detector