Меню

Инвертор напряжения для электродвигателей

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

  1. Виды преобразователей частоты
  2. Способы управления преобразователем
  3. Режимы управления частотными преобразователями
  4. Преимущества частотных преобразователей
  5. Сферы применения

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.

Минусы непосредственных преобразователей частоты:

  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.

Минусы преобразователей с промежуточным звеном постоянного тока:

  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Читайте также:  Нужен ли стабилизатор напряжения для инверторного холодильника

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Источник



Частотный преобразователь для электродвигателя и принцип работы

Огромное значение для современной промышленности имеют мощные асинхронные электродвигатели. Для осуществления их плавного старта используются частотные преобразователи – небольшие устройства, контролирующие значение пусковых токов и иногда позволяющие изменять скорость вращения.

Результат работы частотного преобразователя (частотника)

Зачем нужен преобразователь частоты

Асинхронный двигатель существенно превосходит электрические машины других типов в производительности и мощности, однако не лишен характерных недостатков. Так, например, для контроля над скоростью вращения ротора прибор необходимо оснащать дополнительными элементами. То же самое и с пуском – пусковой ток асинхронного двигателя превышает значение номинального в 5-7 раз. Из-за этого возникают дополнительные ударные нагрузки, потери электроэнергии, что в совокупности лишь уменьшает срок работы агрегата.

Для решения этих проблем в результате упорных исследований был создан класс специальных устройств, предназначенных для автоматического электронного контроля пусковых токов – частотные преобразователи.

Частотный преобразователь для электродвигателя уменьшает величину пусковых токов в 4-5 раз и не только осуществляет плавный запуск, но и управляет ротором путем регулировки напряжения и частоты. Использование прибора имеет и другие достоинства:

позволяет сэкономить до 50% электроэнергии при запуске;
с его помощью обеспечивается обратная связь смежных приводов.

Фактически это не преобразователь, а генератор трёхфазного напряжения необходимой величины и частоты.

Принцип работы

Основу преобразователя частоты составляет инвертор с двойным преобразованием. Принцип его работы заключается в следующем:

  • сначала входной переменный ток синусоидального типа с напряжением 380 или 220 вольт проходит через диодный мост и выпрямляется;
  • затем подается на группу конденсаторов для сглаживания и фильтрации;
  • далее ток передается на управляющие микросхемы и мостовые ключи из IGBT (Биполярный транзистор с изолированным затвором, БТИЗ) транзисторов, формирующие из него трёхфазную широтно-импульсную последовательность с заданными параметрами;
  • на выходе сформированные импульсы прямоугольной формы под влиянием индуктивности обмоток преобразуются в синусоидальное напряжение.

Следующая схема отображает принцип работы преобразователя частоты асинхронного электрического двигателя.

Преобразователь частоты (принцип работы)

Как выбирать

Для производителей преобразователей частоты и другого электронного оборудования основным инструментом завоевания рынка является цена. С целью её уменьшения они создают приборы с минимальным набором функций. Соответственно, чем универсальнее конкретная модель, тем выше её цена. Для нас это имеет большое значение по той причине, что для эффективной и долгой работы двигателя может потребоваться ПЧ с определенными функциями. Давайте рассмотрим основные критерии, на которые следует обращать внимание.

Управление

По способу управления частотные преобразователи делят на векторные и скалярные. Первые на сегодня встречаются гораздо чаще, однако имеют более высокую цену по сравнению со вторыми. Преимущество векторного управления заключается в высокой точности регулировки. Скалярное управление очень просто, оно может лишь удерживать соотношение выходного напряжения и частоты на заданной величине. Такой преобразователь целесообразно ставить на небольшой прибор без высокой нагрузки на двигатель, например, вентилятор.

Мощность

Безусловно, чем это значение выше, тем лучше. К слову, в данном вопросе цифры не столь важны. Обратите большее внимание на фирму-производителя – чем «родственнее» ваше оборудование друг к другу, тем более эффективно оно будет работать. Кроме того, использование нескольких преобразователей от одного бренда поддерживает принцип взаимозаменяемости и простоты обслуживания. Подумайте и наличии в вашем городе соответствующего сервисного центра.

Сетевое напряжение

В данном случае действует тот же принцип, что и в предыдущем разделе – чем шире рабочий диапазон напряжения, тем лучше для нас. Отечественные электросети, к сожалению, слабо знакомы с понятием «стандарт», поэтому лучше максимально обезопасить аппаратуру от вероятных перепадов. Падение напряжения едва ли приведет к серьезным последствиям (преобразователь, скорее всего, просто отключится), а вот большое повышение опасно – оно может привести поломке устройства в результате взрыва электролитических сетевых конденсаторов.

Диапазон частотной регулировки

В данном случае следует опираться исключительно на требования производства и конкретных устройств. Так, например, для такого оборудования, как шлифовальные машины важно значение максимальной частоты (от 1000 Гц). Стандартом нижнего предела считается соотношение 1 к 10 по отношению к верхнему. На практике чаще всего используются преобразователи с диапазоном от 10 до 100 Гц. Заметьте, что широким диапазоном регулировки обладают только модели преобразователей с векторным управлением.

Входы управления

Для передачи команд управления в преобразователях предназначены дискретные входы. С помощью них осуществляется запуск двигателя, остановка, торможение, обратное вращение и т.д. Для сигналов обратной связи, осуществляющих текущий контроль и настройку привода непосредственно во время работы, используются аналоговые входы. А цифровые используются для передачи сигналов с высокой частотой, генерируемых энкодерами (датчиками угла поворота).

Читайте также:  При каком напряжении надо подзаряжать аккумулятор

Фактически, чем больше вводов, тем лучше, однако большое их количество не только делает сложной настройку прибора, но и повышает его стоимость.

Количество выходных сигналов

Дискретные выходы преобразователя необходимы для вывода сигналов, сообщающих о возникновении проблем, таких как, перегрев устройства, отклонение величины входного напряжения от нормы, авария, ошибка и т.п. Аналоговые выходы необходимы для передачи обратных связей в сложных системах. Принцип выбора тот же: ищите баланс между количеством сигналов и стоимость прибора.

Шина управления

В поиске подходящей шины управления поможет схема подключения преобразователя частоты – количество выходов и входов должно быть, как минимум, равным, но лучше купите шину с небольшим запасом – значительно облегчите себе дальнейшее усовершенствование устройства.

Перегрузочные способности

Нормой считается, если мощность частотного преобразователя выше мощности двигателя на 10-15%. Ток тоже должен быть немного выше номинала двигателя. Однако такой подбор «на глаз» рекомендуется только в случае, когда нет необходимой технической документации на двигатель. При ее наличии – тщательно ознакомьтесь с требованиями и подберите соответствующий преобразователь. Если важны ударные нагрузки, пиковый ток преобразователя должен быть больше указанного значения на 10%.

Самостоятельная сборка

Несмотря на то, что покупка надежного и долговечного частотного преобразователя является приоритетным вариантом, такой прибор можно собрать своими руками. Во всемирной сети выложена не одна схема и инструкция, как это сделать. В действительности, сборка своими руками может стать отличной альтернативой в ситуации, когда преобразователь нужен для небольшого бытового устройства. Самодельное устройство справится со своими задачами не хуже покупного, а будет стоить значительно дешевле. Но попытки создания подходящего преобразователя для работы мощных асинхронных двигателей лучше оставить – здесь, как ни старайся, превзойти профессиональные приборы по эффективности и качеству не получится.


Итак, давайте подробно рассмотрим, как собрать частотный преобразователь для асинхронного двигателя своими руками. Обратите внимание, что параметры домашней однофазной электросети позволяют использовать в данном случае двигатель с мощностью не больше 1 кВт.

    1. Для работы двигателя нам необходима схема подключения обмоток «треугольник». Для этого нужно выводы обмоток соединить между собой последовательно, соблюдая принцип «вывод одной обмотки к вводу другой».

Подключение трёхфазного асинхронного двигателя треугольникомСоединение треугольником для электродвигателяСхема подключения электродвигателя треугольникомСхема подключения электродвигателя звездой

  1. Для того чтобы сконструировать преобразователь своими руками нам необходимы следующие компоненты:
    • любой микроконтроллер аналогичный AT90PWM3B;
    • драйвер трехфазного моста (аналог IR2135);
    • 6 транзисторов IRG4BC30W;
    • 6 кнопок;
    • индикатор.
  2. В конструкцию создаваемого нами прибора входят две платы, на одной из которых располагаются драйвер, блок питания, входные клеммы и транзисторы, а на второй – индикатор и микроконтроллер. Для соединения плат между собой воспользуемся гибким шлейфом.
  3. Для сборки частотного преобразователя необходимо использовать импульсный блок питания. Можно воспользоваться готовым устройством, или собрать его самостоятельно (не будем описывать данный процесс – это тема для отдельной статьи).
  4. Для контроля за работой двигателя необходимо подвести внешний управляющий ток, однако мы можем воспользоваться микросхемой IL300 с линейной развязкой.
    Изображение
  5. Транзисторы и диодный мост устанавливаются на общем радиаторе.
  6. Для дублирования управляющих кнопок используются оптроны ОС2-4.
  7. Установка трансформатора на однофазный преобразователь частот для двигателя небольшой мощности не является обязательным шагом. Можно обойтись токовым шунтом с сечением проводов 0,5 мм, и к нему подключить усилитель DA-1 (кстати, он же будет служить для измерения напряжения).
  8. В нашем случае мы собираем своими руками преобразователь для асинхронного двигателя мощность в 400 Вт, поэтому не станем устанавливать термодатчик – схема и без него достаточно сложна.
  9. По окончанию сборки необходимо изолировать кнопки с помощью пластмассовых толкателей. Управление кнопками осуществляется с помощью опторазвязки.

Обратите внимание, что при использовании длинных проводов, на них необходимо надеть помехоподавляющие кольца.

Схема преобразователя частоты

Он позволяет регулировать вращение двигателя в диапазоне частоты 1:40.

Подключение и настройка

Для подключения частотного преобразователя общая схема подключения асинхронного электродвигателя. В цепи преобразователь располагается сразу после дифференциального автомата, рассчитанного на ток, равный номиналу двигателя. При установке преобразователя в трехфазную сеть нужно использовать трехфазный автомат с общим рычагом. Это позволяет в случае возникновения перегрузки на одной из фаз разом отключить все питание. Значение срабатывания должно быть подобрано в соответствии с током одной фазы двигателя. А в ситуации, когда частотный преобразователь устанавливается в сеть с однофазным током, целесообразно использовать автомат, рассчитанный на тройное значение фазы. Так или иначе, установка прибора должна осуществляться вручную, без «врезания» в разрыв «нуля» и заземления.

Пояснение схемы преобразователя частоты

Фактически настройка ПЧ заключается в выборе схемы присоединения фазных проводов к клеммам на электродвигателе, однако она чаще зависит от того, к какому типу сети они подключаются. Для трехфазных электросетей на производственных объектах двигатель подключают «звездой» — эта схема предусматривает параллельное подключение проводов обмоток. Для бытовых однофазных сетей с напряжением 220В используется схема «треугольник» (учитывайте при этом, что величина выходного тока не должна превышать номинал более чем на 50%).

Пульт управления следует расположить в любом месте, наиболее удобном для использования. Схема его подключения указывается в технической документации к частотному преобразователю. Перед монтажом и до подачи питания рычаг следует установить в выключенное положение. После переведения рычага во включенное положение должен загореться соответствующий световой индикатор. По умолчанию для запуска устройства следует нажать клавишу «RUN». Для постепенного наращивания оборотов двигателя надо медленно поворачивать рукоятку пульта. При обратном вращении следует переключить режим с помощью кнопки реверса. Теперь можно установить рукоятку в положение, устанавливающее необходимую скорость вращения. Обратите внимание, что на пультах управления некоторых частотных преобразователей вместо механической частоты вращения указывается частота питающего напряжения.

Дополнительные рекомендации по уходу за оборудованием

Чтобы максимально продлить срок службы частотного преобразователя старайтесь следовать следующим рекомендациям по обслуживанию:

  • Необходимо постоянно проводить внутреннюю очистку прибора от накапливающейся пыли. Возьмите во внимание, что из-за её уплотнения пылесос не всегда может справиться с такой задачей – гораздо проще выдувать пыль наружу небольшим компрессором.
  • Проводите регулярную проверку компонентом схемы и своевременную их замену. Помните, что у всех элементов различный срок эксплуатации: охлаждающие вентиляторы рассчитаны на 2-3 года, электролитические конденсаторы – на 5, а предохранители – на 10. Замены внутренних шлейфов устройства должна производиться примерно раз в 6 лет.
  • Принцип своевременного реагирования следует применять и в отношении последствий периодического нагрева частей устройства. Из-за него высушивается термопаста, что также приводит к выходу конденсаторов из строя. Постарайтесь менять ее чаще 1 раза в 3 года.
Читайте также:  Нормальное напряжение аккумулятора автомобиля при заведенном двигателе

Внимание к внешним условиям, в которых устанавливается частотный преобразователь, тоже позволяет существенно продлить срок его эксплуатации. Это должно быть хорошо вентилируемое место, без прямых солнечных лучей, без нахождения в непосредственной близости легковоспламеняющихся жидкостей и материалов, без мусора, металлической и деревянной стружки, пыли, масляных капель, вибраций, домашних животных, мышей, тараканов… Поверхность установки должна быть ровной и устойчивой. В некоторых случаях следует обратить внимание на расположение преобразователя относительно уровня моря – с каждыми 100 метрами повышения температуру внешней среды можно уменьшать на 0,5˚C относительно нормы (-10˚C — + 45˚C).

Источник

Для чего нужен частотник и как сделать его своими руками для трехфазного электродвигателя

С целью охраны окружающей среды везде вводятся правила, рекомендующие производителям электрооборудования выпускать продукцию, экономно расходующую электроэнергию. Зачастую это достигается эффективным управлением скорости электродвигателя.

Частотник для трехфазного электродвигателя или частотный преобразователь имеет множество наименований: инвертор, преобразователь частоты переменного тока, частотно регулируемый привод. На сегодняшний день частотники производят многие фирмы, но есть немало энтузиастов, создающих преобразователи своими руками.

Назначение и принцип работы инвертора

Частотный преобразователь на трехфазный двигательИнвертор управляет скоростью вращения асинхронных электродвигателей, т. е. двигателей, преобразующих энергию электрическую в механическую. Полученное вращение приводными устройствами трансформируется в другой вид движения. Это очень удобно и благодаря этому асинхронные электродвигатели приобрели большую популярность во всех областях человеческой жизни.

Важно отметить, что скорость вращения могут регулировать и другие устройства, но все они имеют множество недостатков:

  • сложность в использовании,
  • высокую цену,
  • низкое качество работы,
  • недостаточный диапазон регулирования.

Многим известно, что использование частотных преобразователей для регулировки скорости является самым эффективным методом. Это устройство обеспечивает плавный пуск и остановку, а также осуществляет контроль всех процессов, которые происходят в двигателе. Риск возникновения аварийных ситуаций, при использовании преобразователя частоты, крайне незначителен.

Схема частотного преобразователя

Для обеспечения плавной регулировки и быстродействия разработана специальная схема частотного преобразователя. Его использование в значительной мере увеличивает время непрерывной работы трехфазного двигателя и экономит электроэнергию. Преобразователь позволяет довести КПД до 98%. Это достигается увеличением частоты коммутации. Механические регуляторы на такое не способны.

Регулировка скорости инвертором

Первоначально он изменяет поступающее из сети напряжение. Затем из преобразованного напряжения формирует трехфазное, необходимой амплитуды и частоты, которое подается на электродвигатель.

Диапазон регулировки достаточно широкий. Есть возможность крутить ротор двигателя и в обратном направлении. Во избежание его поломки необходимо учитывать паспортные данные, где указаны максимально допустимые обороты и мощность в кВт.

Составные части регулируемого привода

Ниже представлена схема преобразователя частоты.

Схема преобразователя частоты

Он состоит из 3 преобразующих звеньев:

  • выпрямителя, формирующего напряжение постоянного тока при подключении к питающей электросети, который может быть управляемым или неуправляемым,
  • фильтра, сглаживающего уже выпрямленное напряжение (для этого применяют конденсаторы),
  • инвертора, формирующего нужную частоту напряжения, являющегося последним звеном перед электродвигателем.

Режимы управления

Частотники различают по видам управления:

  • скалярный тип (отсутствие обратной связи),
  • векторный тип (наличие обратной связи, или ее отсутствие).

При первом режиме подлежит управлению магнитное поле статора. В случае векторного режима управления учитывается взаимодействие магнитных полей ротора и статора, оптимизируется момент вращения при работе на разной скорости. Это является главным различием двух режимов.

Кроме этого, векторный способ более точен, эффективен. Однако в обслуживании — более затратен. Рассчитан он на специалистов с большим багажом знаний и навыков. Скалярный способ проще. Он применим там, где параметры на выходе не требуют точной регулировки.

Подключение инвертора «звезда — треугольник»

После приобретения инвертора по доступной цене возникает вопрос: как подключить его к двигателю своими руками? Прежде чем это сделать будет нелишним поставить обесточивающий автомат. В случае возникновения короткого замыкания хотя бы в одной фазе, вся система будет немедленно отключена.

Подключение преобразователя к электродвигателю можно осуществить по схемам «треугольник» и «звезда».

Способы подключения преобразователя

Если регулируемый привод однофазный, клеммы электродвигателя подключают по схеме «треугольник». В этом случае потерь мощности не происходит. Максимальная мощность такого частотника 3 кВт.

Трехфазные инверторы более совершенны. Они получают питание от промышленных трехфазных сетей. Подключаются по схеме «звезда».

Чтобы ограничить пусковой ток и снизить пусковой момент во время запуска электродвигателя мощностью более 5 кВт используют вариант переключения «звезда-треугольник».

При пуске напряжения на статор используется вариант «звезда». Когда скорость двигателя станет номинальной, питание переключается на схему «треугольник». Но такой способ применяется там, где существует возможность подключения по обеим схемам.

Важно отметить, что в схеме «звезда-треугольник» резкие скачки токов неизбежны. В момент переключения на второй вариант скорость вращения резко снижается. Чтобы восстановить частоту оборотов, необходимо увеличить силу тока.

Наибольшей популярностью пользуются преобразователи для электродвигателей мощностью от 0,4 кВт до 7,5 кВт.

Инвертор своими руками

Наряду с выпуском промышленных инверторов многие изготавливают их своими руками. Особой сложности в этом нет. Такой частотник может преобразовать одну фазу в три. Электродвигатель с подобным преобразователем можно использовать в быту, тем более что мощность его не теряется.

Схема частотного преобразователя своими руками

Выпрямительный блок идет в схеме первым. Затем идут фильтрующие элементы, отсекающие переменную составляющую тока. Как правило, для изготовления таких инверторов используют IGBT-транзисторы. Цена всех составляющих частотника, изготовленного своими руками, намного меньше цены готового производственного изделия.

Частотники подобного типа пригодны для электродвигателей мощностью от 0,1 кВт до 0,75 кВт

Использование современных инверторов

Современные преобразователи производятся с использованием микроконтроллеров. Это намного расширило функциональные возможности инверторов в области алгоритмов управления и контроля за безопасностью работы.

Преобразователи с большим успехом применяют в следующих областях:

  • в системах водоснабжения, теплоснабжения для регулирования скорости насосов горячей и холодной воды,
  • в машиностроении,
  • в текстильной промышленности,
  • в топливно-энергетической области,
  • для скважинных и канализационных насосов,
  • для автоматизации систем управления технологическими процессами.

Цены источников бесперебойного питания напрямую зависят от наличия в нем частотника. Они становятся «проводниками» в будущее. Благодаря им, малая энергетика станет наиболее развитой отраслью экономики.

Источник

Adblock
detector