Меню

Импульсный стабилизатор отрицательного напряжения

Сверхмалошумящий линейный регулятор отрицательного напряжения со сверхвысоким коэффициентом подавления пульсаций питания

Analog Devices LT3015 LT3090 LT3094 LT8582

Molly Zhu, Analog Devices

Линейный регуляторы с низким падением напряжения (LDO) на протяжении десятилетий широко используются в приложениях, чувствительных к помехам. Однако новейшие прецизионные датчики, быстродействующие преобразователи данных высокого разрешения (АЦП и ЦАП) и синтезаторы частот (ФАПЧ/ГУН) стали ужесточать требования к шумам, и обычные LDO стабилизаторы уже не могут обеспечить сверхнизкий выходной шум и сверхвысокий коэффициент подавления пульсаций питания (PSRR). Например, при питании датчиков шумы источника напрямую влияют на точность результатов измерений. Импульсные регуляторы часто используются в системах распределения электроэнергии для достижения более высокого общего КПД системы. Для создания малошумящего источника питания после относительно шумного импульсного преобразователя обычно включают LDO регуляторы, не используя громоздкие выходные фильтрующие конденсаторы. В таких схемах преобладающей по важности характеристикой становится PSRR на высоких частотах.

Микросхема LT3042, впервые представленная в 2015 году, является первым в отрасли линейным стабилизатором с выходным шумом всего 0.8 мкВ с.к.з. и PSRR, равным 79 дБ на частоте 1 МГц. Два похожих устройства, LT3045 и LT3045-1, отличаются расширенной областью допустимых режимов и наличием дополнительных функций. Все эти устройства являются LDO регуляторами положительного напряжения. Когда в системе имеются биполярные приборы, такие как операционные усилители или АЦП, в источнике питания должен использоваться LDO регулятор отрицательного напряжения. В Таблице 1 перечислены основные особенности LT3094 и аналогичных по функциям устройств.

Типичное применение

LT3094 содержит прецизионный источник опорного тока, к выходу которого подключен высококачественный буфер. Отрицательное выходное напряжение устанавливается током –100 мкА точного опорного источника, протекающим через единственный резистор. Архитектура с токовым управлением обеспечивает широкий диапазон выходных напряжений (от 0 В до –19.5 В) и практически постоянные значения выходного шума, PSRR и коэффициента стабилизации, независящие от запрограммированного выходного напряжения. На Рисунке 1 показана типичная схема приложения, а на Рисунке 2 изображена демонстрационная плата. Общие размеры решения составляют всего около 10 мм × 10 мм.

Рисунок 1. Решение для напряжения –3.3 В с низким выходным шумом.

LT3094 отличается ультранизким выходным шумом, составляющим 0.8 мкВ с.к.з. в полосе от 10 Гц до 100 кГц, и ультравысоким PSRR, равным 74 дБ на частоте 1 МГц. Кроме того, LT3094 имеет программируемый порог ограничения тока, программируемый порог включения сигнала «Питание в норме», цепь быстрого запуска и функцию VIOC (Voltage for Input-to-Output Control – управление напряжением вход-выход). Если LT3094 используется в качестве пострегулятора выходного напряжения импульсного преобразователя, функция VIOC поддерживает напряжение на LDO стабилизаторе постоянным, если выходное напряжение LDO изменяется.

Демонстрационная схема крошечного решения для напряжения -3.3 В.
Рисунок 2. Демонстрационная схема крошечного решения
для напряжения –3.3 В.

От повреждения LT3094 предохраняют внутренние элементы, в том числе схема прогрессирующего ограничения тока, и цепи защиты от перегрева, обратного тока и обратного напряжения.

Прямое параллельное соединение для увеличения выходного тока

LT3094 легко включаются параллельно для увеличения выходного тока. Решение, позволяющее достичь выходного тока 1 А параллельным соединением двух LT3094, показано на Рисунке 3. Для параллельного включения выводы SET соединяются вместе, и между общим выводом SET и землей включается резистор RSET. Ток, проходящий через резистор RSET, равен 200 мкА – удвоенному току выводов SET каждого устройства. Для симметричного распределения тока на каждом выходе LT3094 добавлен балластный резистор с небольшим сопротивлением 20 мОм.

Рисунок 3. Схема параллельного соединения двух LT3094.

На Рисунке 4 изображен тепловой портрет схемы из Рисунка 3, работающей при входном напряжении –5 В, выходном напряжении –3.3 В и токе нагрузки 1 А. Температура каждого компонента поднимается примерно до 50 °C, что свидетельствует о равномерном распределении тепла. Ограничений на количество устройств, которые могут быть подключены параллельно, не существует, ни с точки зрения величины выходного тока, ни с точки зрения выходных шумов.

Рисунок 4. Термограмма двух параллельно соединенных LT3094.

Двуполярный источник питания с регулируемым выходным напряжением

Рисунок 5. Регулируемый источник питания с с двумя выходами положительного
и отрицательного напряжения с высоким коэффициентом подавления
пульсаций и низким перегревом во время работы.

Для достижения низкого уровня выходного шума и высокого КПД системы источник питания обычно состоит из импульсного преобразователя и LDO регулятора. Оптимизированная разность напряжений между входом и выходом LDO регуляторов составляет около –1 В, что обеспечивает хороший компромисс между рассеиваемой мощностью и PSRR. Удержание этой разности напряжений на постоянном уровне сложно в системе с меняющимся выходным напряжением, но в LT3094 реализована функция слежения VIOC, которая поддерживает неизменное напряжение на LDO регуляторе даже при изменении выходного напряжения.

На Рисунке 5 изображена схема двуполярного источника питания, в которой использованы микросхемы LT8582, LT3045-1 и LT3094. LT8582 – это двухканальный DC/DC ШИМ-преобразователь с внутренними ключами, который способен из одного входного напряжения формировать как положительное, так и отрицательное напряжение. Первый канал LT8582 конфигурируется как SEPIC, и регулирует положительное напряжение, а второй канал является инвертирующим преобразователем для шины отрицательного напряжения. Напряжение VIOC управляет напряжением на LT3094 в отрицательной шине как

где напряжение VFBX2 равно 0 мВ, а ток IFBX равен 83.3 мкА. Выбор R2 = 14.7 кОм устанавливает напряжение VIOC, равным 1.23 В во всем диапазоне изменений выходного напряжения. При сопротивлении резистора R1, равном 133 кОм, входное напряжение LT3094 ограничивается уровнем 16.5 В, который можно рассчитать по формуле

Тепловой портрет схемы, работающей при входном напряжении 12 В, показан на Рисунке 6. При изменении выходного напряжения от ±3.3 В до ±12 В превышение температуры LT3094 остается постоянным. Напряжения и токи всех трех устройств приведены в Таблице 2. Рисунок 7 демонстрирует отклик на скачок нагрузки схемы источника питания с выходными напряжениями ±5 В при входном напряжении 12 В.

На Рисунке 5 на входе LT3094 нет никаких дополнительных конденсаторов, кроме выходных конденсаторов LT8582. Как правило, входной конденсатор уменьшает выходные пульсации, но это не относится к LT3094. Если на входе LT3094 будут конденсаторы, коммутируемые токи из импульсного преобразователя будут проходить через входной конденсатор, создавая электромагнитную связь между импульсным преобразователем и выходом LT3094. Выходной шум увеличится, что ухудшит PSRR. При условии, что импульсный регулятор расположен не более чем в двух дюймах от LT3094, мы рекомендуем для достижения наилучших характеристик PSRR не устанавливать конденсатор на входе LT3094.

Рисунок 7. Отклик на скачок нагрузки двуполярного источника питания с выходными напряжениями ±5 В при входном
напряжении 12 В.

Заключение

LT3094 – это LDO стабилизатор отрицательного напряжения с ультранизкими шумами и ультравысоким PSRR. Он имеет архитектуру, основанную на источнике опорного тока, которая сохраняет шумы и характеристики PSRR независимыми от выходного напряжения и позволяет легко соединять параллельно несколько LT3094 для увеличения тока нагрузки и снижения выходного шума. Функция VIOC минимизирует рассеяние мощности на LDO регуляторе, когда LT3094 используется в качестве пострегулятора импульсного преобразователя, что делает эту микросхему идеальным прибором для приложений с меняющимся выходным напряжением.

Материалы по теме

  1. Datasheet Analog Devices LT3015
  2. Datasheet Linear Technology LT3042
  3. Datasheet Linear Technology LT3045-1
  4. Datasheet Analog Devices LT3090
  5. Datasheet Analog Devices LT3094
  6. Datasheet Analog Devices LT8582

Перевод: AlexAAN по заказу РадиоЛоцман

Источник



Импульсные стабилизаторы отрицательного напряжения

Хотя стабилизатор типа ZAfl05 предназначен для работы с положитель­ным выходным напряжением, его можно приспособить для получения отрицательных напряжений. Но все же лучшие результаты и более про­стой реализации можно добиться используя ИС, специально разрабо­танные для получения отрицательных выходных напряжений. Примером такого стабилизатора напряжения является ИС LAfl04, показанная на рис. 17.2.

clip_image002

Рис. 17.2. Принципиальная схема интегрального стабилизатора напря­жения LM104. Эта ИС аналогична ИС ZM105, но сделана так, чтобы пользователю было легко и просто стабилизировать отрицательное напряжение. National Semiconductor Corp.

Две схемы импульсных стабилизатора с отрицательным выходным напряжением приведены на рис. 17.3. Общая идеология и применение совпадают с ИС LAflOS.

В предназначенной для работы с большими токами схеме (рис. 17.3В), возможности расширены за счет введения нескольких изменений. И катушка индуктивности, и фиксирующий диод должны быть рассчита­ны на больший ток. Заметьте, что вывод источника опорного напряже­ния уже не подключен к нестабилизированному входу, а связан с базой выходного транзистора Q2.

clip_image004

clip_image006

Рис. 17.3. Импульсные стабилизаторы отрицательного напряжения. (А) Схема с одним дополнительным транзистором, обеспечивающая на выходе отрицательное напряжение 5 В. (В) Схема с двумя допол­нительными транзисторами для увеличения выходного тока. National Semiconductor Corp.

Этот прием используется для того, чтобы предотвратить превышение положительного напряжения на выводе 5 относительно вывода 3 больше чем на 2 В, что неблагоприятно сказывается на работе ИС LM104. Хотя это изменение достигает своей цели, оно может в некоторых случаях да­вать нежелательный побочный эффект, потому что ухудшается стабилиза­ция из-за введения в источник опорного напряжения нестабилизированно­го входного напряжения. К счастью, это влияние можно устранить, включая последовательно с резистором положительной обратной связи R6 конденсатор емкостью 0,01мкФ. Емкость конденсатора достаточно велика, поэтому слабо изменяет гистерезис компаратора на частоте колебаний, но преграждает путь постоянной составляющей напряжения обратной связи.

Поскольку схема способна выдавать больший ток, необходимость в быстрой реакции полупроводниковых приборах становится более насто­ятельной. Мало того, что медленные компоненты выделяют большее количество тепла, при значительных токах быстро возрастает вероят­ность серьезных нарушений в схеме из-за больших значений максималь­ных токов и петлевых токов блока. В этом случае нельзя применять низ­кочастотные транзисторы и фиксирующие диоды. Накопление заряда в обычных выпрямительных диодах приводит не только к большому рас­сеянию мощности непосредственно в диоде, но и создает короткое за­мыкание для переключающего транзистора, когда он включается (в этом случае диод едва ли можно называть фиксирующим). Как подчер­кивалось в предыдущих главах, ИИП требует скоординированной рабо­ты соответствующих устройств и компонент. Сбой лишь в одном месте может пагубно отразиться на всей последовательности действий, необ­ходимых для достижения высокого к.п.д. и слаженной работы.

Источник

7 схем импульсных стабилизаторов напряжения

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов. Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.

Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.

Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 6.1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.

принципиальная схема

Рис. 6.1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа. Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия. После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, СЗ.

Читайте также:  Светодиодная подсветка телевизор напряжение

Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.

Схема простого импульсного стабилизатора показана на рис. 6.2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ. Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм. Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм. Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.

принципиальная схема

Рис. 6.2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5. 7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18. 20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе СЗ минимальны.

Выходное напряжение стабилизатора можно довести до 8. 10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.

В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.

Основные технические характеристики:

Входное напряжение, В — 15. 25.

Выходное напряжение, В — 5.

Максимальный ток нагрузки, А — 4.

Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.

КПД, %, не ниже — 60.

Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц—20.

В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 6.3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

принципиальная схема

Рис. 6.3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 6.2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 6.2) был введен дополнительный выходной LC-фильтр (L2, С5). Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2. Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5. 10 раз (параллельным соединением нескольких конденсаторов в батарею).

Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом. Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт). Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 6.3) должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор. Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной. Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.

Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается. Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5. 2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 6.3). Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Читайте также:  Виды стабилитронов по напряжению

Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 6.4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1. Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).

принципиальная схема

Рис. 6.4. Схема модифицированного импульсного стабилизатора напряжения.

Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

В стабилизаторе варианта 1 (рис. 6.3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ. Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 6.4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35. Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

Стабилизатор с широтно-импульсным управлением (рис. 6.5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.

При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1. Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.

принципиальная схема

Рис. 6.5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.

Технические характеристики стабилизатора:

Входное напряжение — 15. 25 В.

Выходное напряжение — 12 6.

Номинальный ток загрузки — 1 А.

Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.

Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.

Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.

По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента. Далее процесс протекает аналогично описанному выше. Диоды VD1 и VD2 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока.

Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40×25 мм.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 6.2.

принципиальная схема

Рис. 6.6. Схема импульсного стабилизатора напряжения с КПД преобразования 69. 72%.

принципиальная схема

Рис. 6.7. Схема импульсного стабилизатора напряжения с малыми пульсациями.

Импульсный стабилизатор напряжения (рис. 6.6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3. 48 кГц.

Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм. Обмотки содержат по 20 витков жгута из четырех проводов ПЭВ-2 0,41. Можно применить также кольцевые ферритовые магнитопроводы с зазором.

Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69. 72%. Коэффициент стабилизации — 500. Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20. 25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А. Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.

Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Источник

Adblock
detector