Меню

Импульсный регулятор напряжения принцип работы

Импульсный стабилизатор напряжения – принцип работы стабилизатора

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

Импульсный стабилизатор напряжения

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Импульсный стабилизатор напряжения

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Импульсный стабилизатор напряжения

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Читайте также:  Какие стабилизаторы напряжения лучше для компьютера

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Импульсный стабилизатор напряжения

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Импульсный стабилизатор напряжения

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.
  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

Источник



Принцип работы импульсного стабилизатора напряжения

Импульсный стабилизатор напряжения – это устройство, обладающее высоким коэффициентом полезного действия и незначительно выделяющее тепло. Он может создавать нагрузочный ток в широких пределах и при этом не обладает значительным весом и габаритами.

Общая информация

Что он собой представляет? Стабилизатор может выполнять свой функционал благодаря изменению продолжительности импульсов. Кроме этого доступна функция управления их частотой. Благодаря этому выделяют так называемое широтное регулирование. Еще оно называется частотно-импульсным. Это значит, что устройства работают в комбинированном режиме. На выходе стабилизатора напряжение представлено в виде пульсации. Поэтому оно не подходит для того, чтобы питать потребитель. Прежде чем подавать питание, его необходимо выровнять. Для этой цели используются емкостные фильтры. Для вычисления средней величины напряжения используется четыре параметра:

  • продолжительность периода;
  • сопротивление потребителя;
  • продолжительность импульса;
  • идущий ток по нагрузке (в амперах).

В зависимости от индуктивности он может перестать течь по фильтру до начала следующего импульса. В таком случае говорят о том, что он переменный. Если он и дальше протекает, то ток является постоянным. Если импульсы незначительны, то лучше выбрать переменный. Но при существовании повышенной чувствительности подойдет только постоянный ток (это и оборачивается значительными потерями в проводах и обмотке дросселя).

Строение прибора

регулируемый импульсный стабилизатор напряжения

Итак, теперь известно, что собой представляет импульсный стабилизатор напряжения. Принцип работы этого устройства связан с его строением. Прибор состоит из:

  • выравнивающего фильтра (он корректирует импульс напряжения на выходе);
  • устройства преобразования;
  • генератора;
  • сравнивающего устройства (оно подает сигналы разности между входом и выходом).

Как осуществляется работа?

Всегда возможна ситуация, когда используется только два элемента: преобразователь и фильтр. Однако стоит учитывать, что на практике длительное функционирование без устройства сравнения и задающего генератора не идет. Причем, два последние используются для корректировки процесса работы. Поэтому работают все четыре составные части. При этом напряжение, что формируется на выходе, передается на сравнивающее устройство. Оно сопоставляет его с базовым значением. Таким образом формируется пропорциональный сигнал. Он передается непосредственно на генератор.

Принципиальная специфика устройства

понижающий импульсный стабилизатор напряжения

Рассматривая работу импульсного стабилизатора напряжения особенно следует отметить процесс регулирования. Осуществляется он с помощью генератора. В нем разностный аналоговый сигнал преобразовывается в пульсации, обладающие переменной продолжительностью и постоянной частотой. Но, так происходит не всегда. Если предусмотрена возможность частотно-импульсного регулирования, то их продолжительность является постоянным значением. Работа генератора зависит от свойств передаваемого сигнала. Созданные им импульсы передаются на элементы преобразователя. При этом транзистор регулирования функционирует в режиме ключа. Изменив интервал или частоту импульсов можно поменять нагрузочное напряжение. Все зависит от свойства управляющих импульсов. Если устройство построено на релейном принципе, то стабилизирующий сигнал создается с помощью триггера. Давайте рассмотрим этот вариант более подробно.

Читайте также:  Как пользоваться мультиметром для измерения напряжения аккумулятора автомобиля

Релейный принцип работы

импульсный стабилизатор напряжения принцип работы

Функционирование импульсного стабилизатора напряжения в данном случае выглядит следующим образом: на транзистор, что выступает в роли ключа, подается постоянное напряжение. Он открывается. Напряжение на выходе повышается. Сравнивающее устройство начинает определять сигнал разности. При достижении определенного верхнего предела меняется состояние триггера. В результате осуществляется коммутация регулирующего транзистора на отсечку. После этого напряжение на выходе будет уменьшаться. В случае, если оно дойдет до нижнего предела, то сравнивающее устройство опять определит сигнал разности, поменяется состояние триггера. Транзистор снова войдет в насыщение. Разность потенциалов начнет повышаться, как и напряжение на выходе. Будет сразу же запущен процесс выравнивания.

Настраивается предел срабатывания для триггера благодаря корректировке амплитуды значений напряжения на используемом сравнивающем устройстве. И так постоянно будет идти замкнутый цикл. Импульсный стабилизатор напряжения тока релейного типа обладает повышенной скоростью, что отличает его от приборов, в которых используется широтное и частотное регулирования. Данный факт является их самым значительным преимуществом. Но такой подход всегда обеспечивает импульсы на выходе прибора. Это недостаток.

Что собой представляет импульсный повышающий стабилизатор напряжения?

регулируемый импульсный стабилизатор напряжения

И где они применяются? Такие устройства жизненно необходимы в случае нагрузок, разница которых больше, нежели напряжение на выходе приборов. Как они работают? В стабилизаторе не предусматривается гальваническая изоляция питания и нагрузки. Первоначально вступает в насыщение транзистор. Затем ток идет по цепи по накопительному дросселю от положительного полюса. При этом копится энергия в магнитном поле. Нагрузочный ток может привести к разряду емкости используемого конденсатора. А что будет, если отключить выключающее напряжение с транзистора? При этом он перейдет в положение отсечки. В результате на дросселе возникнет электродвижущая сила самоиндукции.

Также возникнет последовательная коммутация с напряжением входа и движение в сторону потребителя. Это значит, что ток будет идти по нашей катушке индуктивности (дросселю). В этот момент ее магнитное поле будет выдавать энергию. Следует отметить, что емкость конденсатора будет ее резервировать, чтобы поддерживать напряжение после того, как транзистор войдет в режим насыщения. Следует учитывать, что дроссель необходим для резервной энергии, поэтому в фильтре питания он работать не должен.

Стабилизатор с использованием триггера Шмитта

импульсный стабилизатор напряжения тока

Это самый простой вариант устройства. Для него характерен наименьший набор компонентов. Основную роль в конструкции играет триггер, в состав которого входит компаратор. Основной его задачей является сравнение выходной разности потенциалов с максимально допустимым значением. Принцип действия такого устройства заключается в том, что при увеличении напряжения осуществляется коммутация триггера в позицию ноль. Это сопровождается размыканием электронного ключа. И в одно время должен разряжаться только дроссель. Когда напряжение на нем будет доходить до наименьшего значения, то осуществляется коммутация на единицу. Ключ замыкается и ток проходит.

Следует отметить, что подобные устройства являются довольно простыми, однако используются они только в отдельных случаях.

Что собой представляет понижающий импульсный стабилизатор напряжения?

Устройства этого типа являются мощными и компактными приборами питания. Они обладают низкой чувствительностью к наводкам потребителя, постоянным напряжением одного значения. При этом, гальваническое изолирование входа и выхода практически отсутствует. Выходное питание таких устройств всегда меньше входного напряжения.

Собрать своими руками импульсный стабилизатор напряжения такого типа довольно просто. Если кратко, то принципиальная схема выглядит следующим образом: подключается напряжение, что используется для управления истоком и затвором транзистора. Он должен перейти в положение насыщения. Проходит ток от положительного полюса к выравнивающему дросселю и нагрузке. В прямом направлении он не протекает. При отключении управляющего напряжения выключается ключевой транзистор. После этого он пребывает в положении отсечки. Электродвижущая сила индукции выравнивающего дросселя преграждает путь для изменения тока, идущего по цепи. При этом он проходит через нагрузку, идет по общему проводнику и возвращается на дроссель. В результате понижается уровень напряжения.

Инвертирующий стабилизатор

импульсный повышающий стабилизатор напряжения

Это устройство применяется для обслуживания потребителей с постоянным напряжением. Его особенностью является то, что полярность конструкции противоположна направлению разности потенциалов на выходе устройства. Импульсный стабилизатор постоянного напряжения может показывать значения и выше, и ниже того, что есть в сети питания. Это зависит от настройки стабилизатора. Гальваническая изоляция для сети питания и нагрузки не предусмотрена.

Как же работает такое устройство? Первоначально необходимо подключить управляющую разность потенциалов. Это открывает транзистор между затвором и истоком. Он откроется, и начнет поступать ток от плюса к минусу. При этом дроссель будет резервировать энергию благодаря магнитному полю. При отключении разности потенциалов управления от ключа транзистора он будет закрываться. При этом резервная энергия конденсатора и магнитного поля расходуется для нагрузки.

О преимуществах и недостатках

импульсныйстабилизатора напряжения

Отвлечемся от конкретных конструкций, и неважно, что у нас есть: импульсный стабилизатор высокого напряжения или низкого, мы рассмотрим, что же они собой представляют в общих чертах с позиции сильных и слабых сторон. Итак, преимущества:

  • несложно достичь выравнивания;
  • компактные размеры;
  • широкий интервал для стабилизации;
  • высокий коэффициент полезного действия;
  • устойчивость выходного напряжения;
  • плавное подключение.

Увы, не обошлось без недостатков, среди них можно выделить следующие нюансы:

  • сложная конструкция;
  • наличие большого количества специфических компонентов, что негативно сказывается на надежности конструкции;
  • приборы сложно ремонтировать;
  • образовывается много помех для выбора необходимой частоты;
  • часто возникает потребность использовать компенсирующие устройства мощности.

Заключение

импульсный стабилизатор напряжения своими руками

При создании конструкции, несмотря на то, что она не самая легкая, можно вносить коррективы. Благо, при наличии опыта это не так уж и сложно. Хочется создать регулируемый импульсный стабилизатор напряжения, который будет работать в различных диапазонах? Это возможно. Но необходимо хорошо подумать над тем, как же это реализовать. Добавить диод, информирующий световым сигналом о работе устройства? Проще простого! Рассмотренные схемы несложно усовершенствовать, достаточно только проявить терпение, усидчивость и понимание того, что следует делать.

Читайте также:  Определить материал по величине напряжения

Источник

Импульсные стабилизаторы напряжения

В импульсных стабилизаторах (преобразователях) напряжения активный элемент (как правило полевой транзистор) работает в импульсном режиме: регулирующий ключ попеременно то открывается, то закрывается, подавая напряжение питания импульсами на накапливающий энергию элемент. В результате импульсы тока подаются через дроссель (или через трансформатор, в зависимости от топологии конкретного импульсного стабилизатора), который зачастую и выступают элементом, накапливающим, преобразующим, и отдающим энергию в цепь нагрузки.

Импульсы обладают определенными временными параметрами: следуют с определенной частотой и имеют определенную длительность. Данные параметры зависят от величины нагрузки, питаемой в текущий момент от стабилизатора, поскольку именно средний ток дросселя заряжает выходной конденсатор и, по сути, питает подключенную к нему нагрузку.

Импульсные стабилизаторы напряжения

В структуре импульсного стабилизатора можно выделить три главных функциональных узла: ключ, накопитель энергии и цепь управления. Первые два узла образуют силовую часть, которая вместе с третьей составляет законченный контур преобразования напряжения. Иногда ключ может быть выполнен в одном корпусе с цепью управления.

Итак, работа импульсного преобразователя осуществляется благодаря замыканию и размыканию электронного ключа. Когда ключ замкнут, накопитель энергии (дроссель) подключен к источнику питания и накапливает энергию, а когда разомкнут — накопитель отключается от источника и тут же подключается к цепи нагрузки, тогда энергия отдается в конденсатор фильтра и в нагрузку.

В результате на нагрузке действует определенное среднее значение напряжения, которое зависит от длительности и частоты следования управляющих импульсов. Ток зависит от нагрузки, величина которой не должна превышать допустимый для данного преобразователя предел.

Принцип стабилизации выходного напряжения импульсного преобразователя основан на непрерывном сравнении выходного напряжения с опорным, и в зависимости от рассогласования этих напряжений, схема управления автоматически перестраивает соотношение длительностей открытого и закрытого состояний ключа (изменяет ширину управляющих импульсов посредством широтно-импульсной модуляции — ШИМ) либо изменяет частоту следования данных импульсов, сохраняя их длительность постоянной (посредством частотно-импульсной модуляции — ЧИМ). Значение выходного напряжения обычно измеряется на резистивном делителе.

Широко-импульсная модуляция

Допустим, напряжение на выходе под нагрузкой в какой-то момент уменьшилось, стало меньше номинального. В этом случае ШИМ-регулятор автоматически увеличит ширину импульсов, то есть процессы накопления энергии в дросселе станут по длительности больше, и энергии к нагрузке, соответственно, будет передаваться тоже больше. Напряжение на выходе в результате вернется к номиналу.

Частотно-импульсная модуляция

Если стабилизация работает по принципу ЧИМ, то при уменьшении выходного напряжения под нагрузкой, увеличится частота следования импульсов. В итоге к нагрузке будет передаваться больше порций энергии и напряжение сравняется с требуемым номиналом. Здесь уместным будет сказать, что отношение длительности замкнутого состояния ключа к сумме длительностей замкнутого и разомкнутого его состояний — это так называемый коэффициент заполнения DC – duty cycle.

Вообще импульсные преобразователи бывают с гальванической развязкой и без гальванической развязки. В рамках данной статьи мы рассмотрим базовые схемы без гальванической развязки: повышающий, понижающий и инвертирующий преобразователи. В формулах Vin-входное напряжение, Vout-выходное напряжение, DC-коэффициент заполнения импульсов.

Понижающий преобразователь без гальванической развязки — buck converter или step-down converter

Понижающий преобразователь без гальванической развязки

Ключ Т замыкается. При замыкании ключа диод Д заперт, ток через дроссель L и через нагрузку R начинает увеличиваться. Ключ размыкается. При размыкании ключа ток через дроссель и через нагрузку, хотя и уменьшается, но продолжает течь, так как он не может исчезнуть мгновенно, только теперь цепь замкнута не через ключ, а через диод, который открылся.

Ключ снова замыкается. Если за время пока ключ был разомкнут ток через дроссель не успел упасть до нуля, то теперь он опять увеличивается. Итак, через дроссель и через нагрузку все время действует пульсирующий ток (если бы не было конденсатора). Конденсатор сглаживает пульсации, благодаря чему ток нагрузки получается почти постоянным.

Выходное напряжение в преобразователе такого типа всегда меньше входного, которое здесь практически делится между дросселем и нагрузкой. Его теоретическое значение (для идеального преобразователя — без учета потерь на ключе и на диоде) можно найти по следующей формуле:

Выходное напряжение в преобразователе

Повышающий преобразователь без гальванической развязки — boost converter

Повышающий преобразователь без гальванической развязки

Ключ Т замкнулся. При замыкании ключа диод Д заперт, ток через дроссель L начинает увеличиваться. Ключ размыкается. Ток через дроссель продолжает течь, но теперь через открытый диод, причем напряжение на дросселе складывается с напряжением источника. Постоянное напряжение на нагрузке R поддерживается конденсатором C.

Ключ замыкается, ток дросселя снова нарастает. Выходное напряжение у преобразователя такого типа всегда больше входного, так как напряжение на дросселе прибавляется к напряжению источника. Теоретическое значение выходного напряжения (для идеального преобразователя) можно найти по формуле:

Определение выходного напряжения

Инвертирующий преобразователь без гальванической развязки — buck-boost-converter

Инвертирующий преобразователь без гальванической развязки

Ключ Т замкнулся. Дроссель L накапливает энергию, диод Д заперт. Ключ разомкнулся — дроссель отдает энергию в конденсатор С и в нагрузку R. Выходное напряжение здесь имеет отрицательную полярность. Его величина может быть найдена (для идеального случая) по формуле:

Определение величины выходного напряжения

В отличие от линейных стабилизаторов, импульсные стабилизаторы обладают более высоким КПД в силу меньшего нагрева активных элементов, и потому требуют радиатор меньшей площади. Типичные недостатки импульсных стабилизаторов — наличие импульсных помех в выходных и входных цепях, а также более длительные переходные процессы.

Источник

Adblock
detector