Импульсный регулятор напряжения что это такое

Содержание
  1. Импульсный стабилизатор напряжения – принцип работы стабилизатора
  2. Принцип работы
  3. Повышающий стабилизатор
  4. Стабилизаторы с триггером Шмитта
  5. Понижающий стабилизатор
  6. Инвертирующий стабилизатор
  7. Преимущества и недостатки
  8. Допустимая частота
  9. Импульсные регуляторы понижающего типа
  10. Импульсный стабилизатор напряжения
  11. Основы импульсного преобразования
  12. Принцип работы
  13. Сравнение с линейным стабилизатором
  14. Функциональные схемы по типу цепи управления
  15. С триггером Шмитта
  16. С широтно-импульсной модуляцией
  17. Основные схемы силовой части
  18. Преобразователь с понижением напряжения
  19. Преобразователь с повышением напряжения
  20. Инвертирующий преобразователь
  21. Влияние диода на КПД
  22. Гальваническая развязка
  23. Особенности использования
  24. Фильтрация импульсных помех
  25. Входное сопротивление
  26. Использование в сетях переменного тока
  27. Преимущества и недостатки
  28. Преимущества ОС-регулирования
  29. Видео

Импульсный стабилизатор напряжения – принцип работы стабилизатора

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

Импульсный стабилизатор напряжения

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Импульсный стабилизатор напряжения

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Импульсный стабилизатор напряжения

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Импульсный стабилизатор напряжения

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Импульсный стабилизатор напряжения

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.
  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

Источник

Импульсные регуляторы понижающего типа

date image2014-02-24
views image3445

facebook icon vkontakte icon twitter icon odnoklasniki icon

Импульсные регуляторы напряжения

Преобразователи постоянного напряжения

К преобразователям постоянного напряжения относятся импульсные регуляторы напряжения и широтно-импульсные преобразователи.

Импульсные регуляторы напряжения применяются для регулирования постоянного напряжения. По сравнению с другими методами регулирования они обеспечивают лучшие энергетические характеристики, имеют меньшую массу и габариты.

Принцип импульсного регулирования заключается в том, что источник постоянного тока периодически подключается к нагрузке с некоторой частотой. Длительность интервала подключения tu за один период T определяет величину напряжения на нагрузке. Нагрузке (если она активная) придаётся индуктивный характер с помощью дросселя L. Параметры цепи выбирают таким образом, чтобы постоянная времени цепи нагрузки значительно превышала период коммутации тока. При этом в цепи нагрузки обеспечивается непрерывное протекание тока с допустимой пульсацией.

Схема импульсного регулятора понижающего типа приведена на рис. 3.1 (a), временные диаграммы работы этой схемы – на рис. 3.1 (б).

При включённом транзисторе VT ток дросселя нарастает практически по линейному закону от Imin до Imax. Напряжение на дросселе при этом равно:

при условии, что .

При выключенном транзисторе ток дросселя уменьшается от Imax до Imin, при этом напряжение на дросселе обеспечивает значение напряжения на нагрузке:

Из равенства нулю среднего значения напряжения на дросселе следует:

Следовательно, изменяя коэффициент заполнения управляющих импульсов, можно регулировать напряжение на нагрузке в пределах 0…EП.

С учётом падений напряжения на транзисторе и диоде реальное максимальное напряжение составляет (0.9 … 0.95)EП.

Если нагрузка имеет индуктивный характер (например, двигатель постоянного тока), то требуемое значение пульсаций тока достигается за счёт выбора частоты коммутации транзистора VT. Абсолютная величина равна:

и максимальное значение достигается при КЗ = 0.5. С учётом этого требуемое значение частоты коммутации для обеспечения требуемого коэффициента пульсации тока равно:

При активном характере сопротивления нагрузки в цепь включается дроссель с индуктивностью L, который определяет пульсации тока в нагрузке. Для уменьшения индуктивности дросселя параллельно нагрузке включается конденсатор. Для обеспечения непрерывного характера тока дросселя величина должна удовлетворять условию:

При наличии конденсатора переменная составляющая тока дросселя (треугольная по форме) замыкается через конденсатор. Падение напряжения на конденсаторе, обусловленное током первой гармоники, определяет пульсации напряжения на нагрузке:

Для треугольной формы тока амплитуда первой гармоники максимальна при КЗ = 0.5 и составляет (согласно разложению в ряд Фурье):

При использовании в качестве коммутирующего элемента мощных полевых транзисторов MOSFET и IGBT частота коммутации может составлять десятки – сотни килогерц.

При использовании тиристоров частота коммутации не превышает нескольких килогерц. Схема импульсного регулятора на незапираемом тиристоре с принудительной коммутацией приведена на рис. 3.2.

Для запирания основного тиристора VS1 используются вспомогательный тиристор VS2 и коммутирующий конденсатор С. Предварительно конденсатор С заряжается по цепи VS2 – R – Lн до напряжения питания. После включения VS1 конденсатор перезаряжается по цепи VS1 – VD1 – Lк – С, причём переходной процесс носит колебательный характер. Наличие диода VD1 приводит к тому, что в цепи протекает только первый положительный полупериод тока конденсатора, после чего напряжение на конденсаторе не изменяется. Для выключения тиристора VS1 включается тиристор VS2 и конденсатор С разряжаясь по цепи VS2, VS1 выключает, приложенным в обратном направлении напряжением, тиристор VS1. При этом напряжение на нагрузке скачком увеличится до значения E+Uc. Ток нагрузки на интервале коммутации остаётся неизменным, поэтому напряжение на конденсаторе изменяется по линейному закону. Когда конденсатор С разрядится до нуля, на аноде тиристора VS1 вновь нарастает прямое напряжение со скоростью . Для надёжного запирания тиристора VS1 время разряда конденсатора должно быть больше времени выключения тиристора.

Далее напряжение на нагрузке продолжает линейно снижаться до полного перезаряда конденсатора С через тиристор VS2. Когда ток тиристора VS2 уменьшится до нуля, он выключится. Ток нагрузки замыкается по цепи диода VD0.

Наличие “всплесков” напряжения на нагрузке требует выбирать полупроводниковые приборы на двойное напряжение питания. Кроме того, диапазон регулирования напряжения уменьшается, так как при малых коэффициентах заполнения эти “всплески” не позволяют снизить напряжение меньше определённого уровня.

В схеме импульсного регулятора с мягкой коммутацией основной тиристор VS1 шунтируется в обратном направлении диодом VD2 (рис. 3.3).

Процесс перезаряда конденсатора С происходит так же, как и в предыдущей схеме. После включения тиристора VS2 в цепи C – Lк – VS2 – VS1 – C возникает колебательный переходной процесс перезаряда конденсатора. Когда мгновенное значение разрядного тока конденсатора равно мгновенному току нагрузки, тиристор VS1 обесточивается и далее разность токов конденсатора и нагрузки замыкается по диоду VD2. К основному тиристору VS1 приложено обратное напряжение, равное прямому падению напряжения на диоде VD2. Ток через VD2 должен протекать в течение времени, достаточного для выключения основного тиристора VS1. Когда ток конденсатора станет меньше тока нагрузки происходит дополнительный заряд конденсатора током нагрузки, и напряжение на нагрузке уменьшается по линейному закону, на этом интервале разностный ток нагрузки и конденсатора замыкается через диод VD0. Мгновенное значение напряжения на нагрузке не превышает величину Е.

Включение параллельно основному тиристору обратного диода позволяет отдавать мощность нагрузки в источник электропитания. Такой режим возможен при переходе двигателя постоянного тока в генераторный режим (режим динамического торможения). Вместе с тем, за счёт низкого обратного напряжения, приложенного к основному тиристору, увеличивается время выключения тиристора.

Схема импульсного регулятора, позволяющего регулировать напряжение на нагрузке от EП и выше, приведена на рис. 3.4.

Повышение напряжения на нагрузке осуществляется за счёт энергии дросселя, включённого последовательно в цепь нагрузки. При включенном транзисторе VT дроссель подключается к источнику постоянного напряжения, ток дросселя линейно нарастает от Imin до Imax. Напряжение на дросселе практически равно EП.

Закрытый диод разделает схему на два участка. Ранее заряженный конденсатор С разряжается на нагрузку, обеспечивая непрерывность тока нагрузки.

При закрытом транзисторе ток дросселя замыкается через открывшийся диод уменьшается от Imax до Imin. Напряжение на дросселе меняет полярность и по отношению к нагрузке включено последовательно согласно с источником питания:

Из равенства нулю среднего значения напряжения на дросселе следует:

Регулировочная характеристика (рис. 3.5) повышающего импульсного регулятора нелинейная, причём её вид зависит от соотношения сопротивлений элементов схемы (транзистора, диода, дросселя) и сопротивления нагрузки. При увеличении этого соотношения максимум напряжения уменьшается и устойчивая работа регулятора возможна до определённой величины коэффициента заполнения управляющих импульсов.

Среднее значение тока диода равно току нагрузки:

Среднее значение тока дросселя, а, следовательно, и источника постоянного напряжения равно:

Среднее значение тока транзистора равна:

Все полупроводниковые приборы должны быть выбраны на напряжение не меньше, чем максимальное значение напряжения на нагрузке.

Импульсные регуляторы для двигателей постоянного тока кроме регулирования величины напряжения, подаваемого на двигатель, должны выполнять ещё функции реверсирования (изменения полярности выходного напряжения) и динамического торможения (возврат энергии в источник постоянного напряжения при переходе двигателя в генераторный режим). Эти функции выполняются с помощью преобразователей постоянного напряжения с широтно-импульсным управлением.

Преобразователь представляет собой мостовую схему на полностью управляемых ключах, которые зашунтированы обратными диодами (рис. 3.6).

Обратные диоды используются для возврата энергии в источник, поэтому если источник постоянного напряжения не обладает двусторонней проводимостью (например, выпрямитель), то выход источника необходимо зашунтировать конденсатором С соответствующей ёмкости.

Основные параметры преобразователя определяются алгоритмом управления ключами. Различают три способа управления ключами:

При симметричном управлении ключи коммутируются попарно в противофазе. При включении ключей К1 и К4 напряжение на двигателе равно EП и имеет положительную полярность; при включении К2 и К3 напряжение на двигателе меняет полярность, оставаясь таким же по величине. Среднее значение напряжения на нагрузке определяется с учётом напряжений обеих полярностей (рис. 3.7 (а)).

Величина напряжения определяется коэффициентом заполнения управляющих импульсов: для одной пары ключей (К1 и К4) равен KЗ, а для другой (К2 и К3) – 1-KЗ:

В интервале изменения KЗ от 0 до 0.5 напряжение на нагрузке изменяется от —EП до 0, а в интервале от 0.5 до 1 – от 0 до EП.

Форма тока нагрузки имеет такой же характер, как и в импульсных регуляторах: при включённых ключах К1 и К4 ток нагрузки линейно нарастает от Imin до Imax, когда К1 и К4 закрыты, то ток нагрузки, определяемый индуктивностью нагрузки, через диоды VD2 и VD3 возвращает в источник энергию, запасённую в индуктивности, и уменьшается от Imax до Imin.

При работе нагрузки (двигатель постоянного тока) в генераторном режиме, когда э.д.с. якоря EЯ больше ЕП, ток нагрузки меняет своё направление и при включённых ключах К1 и К4 ток нагрузки через диоды VD1 и VD4 возвращает энергию в источник, при этом ток уменьшается от —Imax до —Imin, а при включенных ключах К2 и К3 ток нагрузки увеличивается от —Imin до —Imax, запасая энергию в индуктивности нагрузки. При изменении коэффициента заполнения управляющих импульсов изменяется величина энергии, возвращаемой в источник.

Симметричный способ управления характеризуется повышенными пульсациями тока нагрузки вследствие изменения напряжения на нагрузке от —EП до +EП, и непропорциональной зависимостью напряжения на нагрузке от коэффициента заполнения.

При несимметричном методе управления для положительной полярности напряжения на нагрузке ключи К1 и К2 управляются в противофазе, ключ К4 постоянно открыт, а К3 – постоянно закрыт. Для отрицательной полярности напряжения – наоборот: К3 и К4 управляются в противофазе, К2 – открыт, К1 – закрыт. Далее рассматривается работа преобразователя при положительной полярности напряжения на нагрузке (рис 3.7 (б)).

При открытом ключе К1 ток нагрузки увеличивается от Imin до Imax, напряжение на нагрузке равно +EП. Когда К1 закрывается, ток нагрузки замыкается через К4 и VD2, уменьшаясь от Imax до Imin, при этом напряжение на нагрузке практически равно нулю. Коэффициент заполнения управляющих импульсов может изменяться от 0 до 1, при этом напряжение на нагрузке меняется от 0 до +EП:

При работе нагрузки в генераторном режиме при открытом К1 ток нагрузки через диоды VD1 и VD4 возвращает энергию в источник, а при открытом К2 ток нагрузки замыкается через К2 и VD4, накапливая энергию в индуктивности нагрузки.

При недостаточно высокой граничной частоте коммутации ключей увеличить частоту пульсаций тока в нагрузке в два раза позволяет поочерёдный способ управления ключами. Если нет необходимости осуществлять режим возврата энергии в источник, то управляющее напряжение подаётся только на ключи одной диагонали: для положительного напряжения на К1 и К4, для отрицательного – на К2 и К3.

Форма управляющего напряжения показана на рис. 3.8 (а).

Длительность импульса изменяется в пределах от до , а паузы управляющих напряжений сдвинуты на половину периода . Напряжение на нагрузке равно напряжению питания, когда оба ключа открыты, и равно нулю, когда один из ключей закрыт. Ток нагрузки при этом замыкается через другой открытый ключ и соответствующий обратный диод. Такая ситуация возникает два раза за период управляющего напряжения, поэтому частота пульсаций напряжения и тока в нагрузке в два раза выше. Изменение длительности управляющих импульсов от до соответствует изменению коэффициента заполнения импульсов напряжения на нагрузке от 0 до 1.

Если управлять ключом К2 в противофазе с ключом К1, а ключом К3 в противофазе с ключом К4, то преобразователь может работать в режиме возврата энергии в источник при работе двигателя постоянного тока в генераторном режиме (рис. 3.8 (б)).

Источник

Импульсный стабилизатор напряжения

Преобразование напряжения необходимо для того, чтобы реализовать возможность работы различных устройств от сети переменного тока. Кроме того, питание электронных схем разными величинами напряжения вынуждает выполнять не только превращение переменного электричества в постоянное, но и повышение или понижение разности потенциалов до нужных параметров.

Импульсный преобразователь напряжения

Основы импульсного преобразования

Работа подобных устройств, их ещё называют импульсными стабилизаторами (ИС), основана на ключевой стабилизации. В схеме имеется элемент, который выполняет регулировку выходных параметров за счёт своего запирания-отпирания.

В обычную трансформаторную схему входит трансформатор низкой частоты, имеющий первичную и вторичную обмотку. Импульсное преобразование тоже подразумевает наличие трансформатора, но уже высокочастотного.

Внимание! Высокочастотные импульсные трансформаторы обладают меньшими габаритами, дешевле, но их мощность выше.

Импульсные преобразователи напряжения (ИПН) допускают использование схем трёх типов:

  • повышающей;
  • понижающей;
  • инверторной.

ИПН обладают высоким КПД и малыми габаритами. Они включают в свой состав следующие элементы:

  • блок питания (источник питания);
  • ключ – элемент коммутации;
  • накопитель энергии индуктивной природы – дроссель, катушка;
  • диод блокировки;
  • фильтр выходного напряжения – конденсатор большой емкости.

Фильтр обычно включается параллельно нагрузке.

Принцип работы

Импульсный стабилизатор напряжения использует принцип сравнения опорного напряжения с напряжением на выходе. Схема позволяет регулировать длительность открытия ключа. Входное напряжение от источника питания (ИП) пропускается ключом по сигналу управления заданными частями (импульсами) с учётом того, что средний потенциал (пониженный или повышенный) был стабильным.

Блок-схема ИС

Сравнение с линейным стабилизатором

Чтобы сравнить два принципа преобразования, нужно вспомнить, что линейные стабилизаторы (ЛС) – это обычно делитель напряжения. У него нестабильный потенциал подаётся на вход делителя, а стабильный – снимается со второго плеча (нижнего). Принцип стабилизации заключается в постоянном изменении сопротивления верхнего плеча схемы таким образом, чтобы на нижнем оно оставалось стабильным.

К сведению. Когда отношение Uвх/Uвых велико, то КПД линейного стабилизатора очень низкий. Это связано с потерями энергии на регулирующем резисторе. Он греется, оттого часть мощности на входе теряется.

У таких сборок есть свои плюсы, а именно: простота схемы, минимум элементов и неимение помех. По сравнению с линейными, импульсные стабилизаторы (ИС) сложнее, но работают стабильнее при правильно подобранной схеме.

В ИС могут возникать автоколебания, которые приводят к частичной неработоспособности или полному выходу преобразователя из строя. Это происходит в случае, когда импеданс источника Uвх превысит значение импеданса ИС, тогда при снижении Uвх повышается ток на входе.

Функциональные схемы по типу цепи управления

По виду управляющей цепи можно выделить несколько рабочих схем, включающих в себя:

  • триггер Шмитта;
  • ШИМ – широтно-импульсную модуляцию;
  • ЧИМ – частотно-импульсную модуляцию.

Важно! Импульсные стабилизаторы – это устройство с автоматическим регулированием, ориентирующееся на опорное напряжение, которое служит эталонным параметром для схемы регулирования.

Блок-схемы ИПН с триггером Шмитта и ШИМ

С триггером Шмитта

При таком построении схемы стабилизации верхний и нижний пороги срабатывания триггера сравниваются с Uвх. Для этой цели используется компаратор – устройство сравнения. Ключ размыкается в момент, когда выходное напряжение сравняется с напряжением срабатывания триггера (Umax). Энергия, накопившаяся за это время, выдаётся на нагрузку, и Uвых после этого спадает. Как только её величина достигнет Umin (нижнего порога), триггер переключается, замыкая ключ.

Такой способ называется стабилизацией с двухпозиционной регулировкой или релейной. Схемы с триггером Шмитта имеют на выходе устройства напряжения с величиной пульсации, обусловленной разностью порогов срабатывания. Эту пульсацию практически устранить невозможно.

В ИС с триггером Шмитта частотное преобразование зависит от Uвх и Iн (тока нагрузки) и является переменным.

С широтно-импульсной модуляцией

На выходе таких схем получают Uср (среднее), на которое влияют скважность импульсов и Uвх. Операционный усилитель (ОУ) представляет собой схему сравнения Uвых и Uоп (опорного) путём вычитания и последующего усиления. Результат поступает на модулятор, который подстраивает свои параметры в зависимости от этого результата.

Модулятор изменяет (в сторону увеличения) отношение времени, при котором ключ открыт, к периоду тактового импульса генератора, если Uвых С частотно-импульсной модуляцией

Подобные сборки отличаются тем, что скважность импульсов (частота) напрямую зависит от понижения Uвх или увеличения Iн. При этом длительность отпирающего ключ импульса неизменна. Частота подачи импульсов подчинена сигналу разности Uвых и Uоп. Моностабильный мультивибратор, имеющий управляемую запускающую частоту, может смело справиться с подачей команд на ключ.

Моностабильный мультивибратор на транзисторах

Основные схемы силовой части

В зависимости от назначения ИС, можно выделить три базовых модели его построения:

  • понижающая;
  • повышающая;
  • инвертирующая.

Независимо от конструктивного исполнения и назначения ИС, устройствами, использующимися в роли ключа, могут быть:

  • тиристор;
  • транзистор (биполярный или полевой).

Основная задача подобного элемента – отрываться или закрываться по команде, поступающей на управляющий электрод.

Преобразователь с понижением напряжения

Обычно уменьшить величину напряжения необходимо чаще, потому такие ИС более востребованы.

Простейшая схема понижающего ИС

У понижающего стабилизатора напряжения, приведённого на схеме, ключ на полевом транзисторе VT1 откроется при подаче на него управляющего напряжения. Ток от плюсовой клеммы будет поступать на нагрузку через сглаживающий дроссель L1. Включенный параллельно в цепь диод VD1 в данный момент не пропускает ток. После размыкания ключа цепь тока следующая: дроссель L1 – нагрузка – общий провод – диод VD1 – дроссель L1. При этом ток, проходящий через дроссель, не прекратится мгновенно, а будет постепенно уменьшаться.

Важно! У дросселей, имеющих большую индуктивность, он не становится равным нулю до начала следующего открытия ключа. Установка таких элементов нецелесообразна из-за увеличения габаритов и стоимости.

Конденсатор C1 в это время будет разряжаться на нагрузку и поддерживать U вых. Емкость C вместе с индуктивностью L образует фильтр, снижающий размах пульсаций.

Преобразователь с повышением напряжения

В отличие от понижения Uвх, этот тип схем используют для питания цепей нагрузки, которым для работы необходимо напряжение выше, чем у источника.

Повышающий ИС

Компоненты схемы те же самые, но включены иначе. При открытом транзисторе диод закрыт, и на дросселе линейно нарастает ток. При запирании ключа ток начинает двигаться по цепи: плюсовая клемма – дроссель L1 – диод VD1 – нагрузка – минусовая клемма. Конденсатор C1 в это время будет заряжаться. Он будет поддерживать ток на нагрузке во время своего разряда на неё при следующем открытии ключа.

Инвертирующий преобразователь

Подобная сборка также не имеет гальванической развязки между входным и выходным каскадами. В ней совсем иное включение дросселя, конденсатора и нагрузки. Они расположены параллельно.

Инвертирующий ИС

При открытом ключе VT1 ток протекает по цепи: плюсовая клемма – транзистор – дроссель – минусовая клемма. Дроссель накапливает энергию при содействии магнитного поля. Когда транзистор закрывается, то цепь прохождения тока меняется: дроссель – конденсатор C1 – диод VD1 – дроссель. Энергия дросселя и энергия конденсатора будут полностью отдаваться нагрузке. Амплитуда пульсации целиком зависит от ёмкости C1. В этот момент напряжение на нагрузке не меняется, несмотря на то, что ток через С1 спадает почти до нуля.

Кстати. Выходное напряжение у инвертирующих ИС может отличаться от напряжения источника питания, как в большую, так и в меньшую сторону.

Влияние диода на КПД

Включенный в электрическую цепь диод вызывает на себе падение напряжения от 0,4 до 0,7 В. При токе от нескольких ампер и низком Uвых на элементе происходит потеря мощности, что приводит к снижению КПД. Применяют альтернативный вариант – замену диода на полевой транзистор. Подбирают такой, чтобы в открытом состоянии падение напряжения на нём было минимальным.

Внимание! Можно в схемах вместо диода поставить ещё один ключ, который будет работать в противофазе с основным.

Гальваническая развязка

Чтобы обезопасить человека при эксплуатации ИС, применяют гальваническую развязку. Для этого включают в схему разделительный трансформатор или дроссель с дополнительной обмоткой. На рабочих частотах 20 кГц – 1 МГц они не столь габаритны, как трансформаторы для частоты переменного тока 50 Гц. В управляющих цепях для развязки устанавливают оптроны (оптопары).

Особенности использования

Импульсные стабилизаторы могут использоваться как драйверы для светодиодов и led-ламп. Кроме того, их применяют в различных устройствах, таких как:

  • блоки питания ЖК телеприёмников;
  • оборудование навигации;
  • источники питания для компьютеров и устройств цифровых систем.

Импульсные стабилизаторы используют для зарядных устройств и преобразования переменного тока в постоянное электричество.

Фильтрация импульсных помех

Сильные помехи, издаваемые импульсным стабилизатором напряжения (ИСН) в моменты коммутации ключа (броски тока и напряжения), необходимо подавлять. Для этого требуется применять фильтры и размещать их на входе и выходе.

Входное сопротивление

У ИСН, работающих под нагрузкой, при увеличении Uвх уменьшается ток на входе (Iвх). Это значит его входное сопротивление отрицательно дифференциальное. При подключении ИСН к источникам, у которых внутреннее сопротивление велико, возможна нестабильная работа.

Использование в сетях переменного тока

Для подключения к источнику переменного тока перед ИСН устанавливают выпрямитель и фильтр. Эта зона, где возникает опасность поражения человека током. Элементы, входящие в эту зону, должны быть закрыты от прикосновения или отмечены маркером (графическое и цветовое предупреждение).

Преимущества и недостатки

Все плюсы и минусы для импульсных стабилизаторов можно свести в одну таблицу.

Достоинства и недостатки ИСН

Преимущества ОС-регулирования

Обратная связь при регулировании напряжения в ИС является важной опцией для импульсных стабилизаторов. Она позволяет поддерживать на выходе устройства напряжение стабильной величины, чутко следя за бросками напряжения и тока. В ИСН применяется широкополосная ОС (чем шире интервал частот, тем меньше уровень пульсации в результате).

Доступность на рынке радиодеталей комплектующих для построения ИСН даёт возможность собрать своими руками любую из схем импульсных стабилизаторов. Использование в них готовых стабилизаторов на интегральных микросхемах (ИМС) и ключей на полевых транзисторах делает устройство максимально компактным.

Видео

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector