Формула расчета среднего значения выпрямленного напряжения выпрямителя

Маломощные выпрямители

Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт и выпрямители большой мощности (киловатты и больше)).
Содержание:

Принцип работы выпрямителя

Структурная схема выпрямителя показана ниже:

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.

Нулевая схема выглядит так:

Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Z н=R н. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке R н. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение U d будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/ m (в нашем случае m-2). Если нагрузка активное сопротивление R н, то и ток в нем i d , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. Как мы увидим далее, у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую ( в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку U d и среднее значение тока в нем I d.

Среднее значение выпрямленного напряжения

Запомним это выражение на дальнейшее. В нашем случае m=2 и

Источник

Электроника

учебно-справочное пособие

  • Главная
  • Теория
  • Практика
  • Справочники
  • Схемы
  • Arduino
  • Тесты

Расчет выпрямителей напряжения

Выпрямители относятся ко вторичным источникам электропитания, для которых первичным источником являются сети переменного тока. Выпрямитель — это устройство, которое преобразует переменное напряжение питающей сети в однонаправленное пульсирующее. Именно однонаправленное пульсирующее так как назвать его постоянным немного некорректно. Существует и несколько иное определение: выпрямитель предназначен для преобразования переменного напряжения в импульсное напряжение одной полярности.

Выпрямители могут быть однополупериодные и двуполупериодные. К тому же они разделяются на однофазные и многофазные.

Однополупериодный выпрямитель

Рис. 1 — Диаграмма напряжений однополупериодного выпрямителя

Схема однополупериодного выпрямителя до боли проста и объяснять тут нечего. Для наглядности положительные и отрицательные полуволны показаны разными цветами (рис. 1). Поскольку диод обладает свойствами односторонней проводимости, на выходе получается пульсирующее напряжение одной полярности. Для схемы характерны следующие параметры:

Среднее значение выпрямленного напряжения:

Действующее значение входного напряжения:

Среднее значение выпрямленного тока:

Действующее значение тока во вторичной обмотке трансформатора:

Достоинства схемы — простота конструкции.

Недостатки — большие пульсации, малые значения выпрямленного тока и напряжения, низкий КПД.

Применяется такая схема для питания низкоомных нагрузок, некритичных к высоким пульсациям. В бытовой технике однолупериодные выпрямители применяются в основном в импульсных источниках питания: из-за большой рабочей частоты (около 15 кГц а иногда и выше) пульсации не столь чувствительны и их легче сгладить.

Двухполупериодный выпрямитель

Схема выпрямления с выводом от средней точки трансформатора

Рис. 2 — Диаграмма напряжений схемы выпрямителя с выводом от средней точки трансформатора

Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством. Для такой схемы характерны следующие параметры:

Достоинства: удвоенные значения Uср и Iср , вдвое меньший коэффициент пульсаций по сравнению с однополупериодной схемой.

Недостатки: наличие трансформатора с двумя симметричными обмотками (что увеличивает его массогабаритные показатели). К тому же на диодах удвоенное обратное напряжение.

Мостовая схема выпрямителя

Рис. 3 — Схема мостового выпрямителя

Параметры такие же, как и двухполупериодной схемы со средним выводом, кроме обратного напряжения (оно в два раза меньше). Положительная полуволна (с верхнего по схеме вывода трансформатора) проходит через диод VD2, затем через нагрузку, затем через VD3 ко второму выводу трансформатора. При смене направления тока работают диоды VD4, VD1. Недостатком схемы считается удвоенное число диодов.

Достоинство — не нужен трансформатор со средней точкой.

Трехфазный выпрямитель

Однополупериодный трехфазный выпрямитель

Рис. 4 — Схема и диаграммы напряжений трехфазного однополупериодного выпрямителя

Каждая фаза смещена относительно другой на угол 120°. На нагрузке работает та фаза, у которой больше значение положительной полуволны в данный момент времени. В схеме диоды используются в течении 1/3 периода. При этом необходимо наличие средней точки.

Среднее значение выпрямленного напряжения:

Двухполупериодный трехфазный выпрямитель

Рис. 5 — Схема двухполупериодного трехфазного выпрямителя

По принципу действия такая схема аналогична однофазной двухполупериодной (мостовой). Для нее характерно:

Находит применение при различных величинах входного напряжения и токах нагрузки в сотни Ампер. Схема экономична, имеет низкие пульсации. Однако в реальных схемах коэффициент пульсаций составляет 8-10% из-за несимметричности фазных питающих напряжений.

Источники:

Электроника © ЦДЮТТ • Марсель Арасланов • 2019

Источник

Расчет выпрямителя

Поскольку в преобладающем большинстве конструкций блоков питания используется двухполупериодный выпрямитель, диоды которого включены по мостовой схеме (рис. 1), о выборе его элементов здесь и пойдет разговор. Рассчитать выпрямитель — значит правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления с вторичной обмотки сетевого трансформатора. Исходными данными для расчета выпрямителя служат: требуемое напряжение на нагрузке (U н ) и потребляемый ею максимальный ток (I н ) .

Расчет ведут в таком порядке:

1. Определяют переменное напряжение, которое должно быть на вторичной обмотке сетевого трансформатора:

где: U н — постоянное напряжение на нагрузке, В;
В — коэффициент, зависящий от тока нагрузки, который определяют по табл. 1.

Коэффициент Ток нагрузки, А
0,1 0,2 0,4 0,6 0,8 1,0
В 0,8 1,0 1,9 1,4 1,5 1,7
С 2,4 2,2 2,0 1,9 1,8 1,8

2. По току нагрузки определяют максимальный ток, текущий через каждый диод выпрямительного моста:

где: I д — ток через диод, А;
I н — максимальный ток нагрузки, А;
С — коэффициент, зависящий от тока нагрузки (определяют по табл. 1).

3. Подсчитывают обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

где: U обр — обратное напряжение, В;
U н — напряжение на нагрузке, В.

4. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

5. Определяют емкость конденсатора фильтра:

С ф = 3200 I н / U н K п ,

где: С ф — емкость конденсатора фильтра, мкФ;
I н — максимальный ток нагрузки. A;
U н — напряжение на нагрузке, В;
K п — коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения).

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector