Формула мощности электрического конденсатора

Содержание
  1. Энергия конденсатора
  2. Что такое конденсатор
  3. Электроемкость
  4. Определение энергии конденсатора
  5. Энергия поля плоского конденсатора
  6. Для чего знать энергию
  7. Величина энергии
  8. Виды конденсаторов
  9. Использование конденсаторов
  10. Конденсатор или аккумулятор
  11. Видео
  12. Ёмкость конденсатора
  13. Переменный ток. Резистор, конденсатор и катушка в цепи переменного тока.
  14. Свойства и выполняемые функции
  15. Понятие полярности для конденсаторов и их выход из строя
  16. Емкостное сопротивление
  17. Понятие ёмкости
  18. Векторное представление
  19. График ёмкостного сопротивления
  20. Работа (мощность) в ёмкостной нагрузке
  21. Прочие параметры
  22. Не все X7R созданы одинаковыми.
  23. Конденсатор в цепях электрического тока
  24. Цепь постоянного тока
  25. Цепь переменного тока
  26. Напряжение на конденсаторе в цепи синусоидального тока
  27. Включение в цепи синусоидальной ЭДС
  28. Виды включений
  29. Простейший тип включения
  30. Вопросы и задания для самоконтроля

Энергия конденсатора

Этот двухполюсный элемент применяют в разных электрических схемах. Способность к накоплению энергии с последующей отдачей в цепь используют для фильтрации сигналов, создания колебательного контура, решения иных практических задач.

Конденсатор в цепи переменного тока смещает фазы тока и напряжения

Что такое конденсатор

Конструкция простейшего устройства этой категории состоит их двух проводящих пластин с диэлектриком в промежутке. Подключением такого устройства к источнику постоянного тока накапливают на рабочих элементах положительные и отрицательные заряды. После разрыва цепи питания энергетический потенциал сохраняется.

Электроемкость

Этим термином характеризуют накопительные способности пассивного элемента. В обозначениях серийных изделий указывают номинальное значение. Так как базовая единица (Ф, фарад) слишком велика, пользуются уменьшительными приставками для обозначения часто применяемых электронных компонентов:

  • миллифарад (мФ) – 10-3 Ф;
  • нанофарад (нФ) – 10-9 Ф;
  • пикофарад (пФ) – 10-12 Ф.

Один фарад соответствует емкости, при которой накопленный единичный заряд (1Кл) создаст разницу потенциалов на пластинах 1 В.

Определение энергии конденсатора

Чтобы выяснить, от чего будут зависеть накопительные характеристики, можно применить две методики. Первая – это определение работы, которая выполняется для распределения зарядов на обкладках. Подразумевается, что для этого понадобится затратить определенную энергию. Во втором варианте пользуются притяжением разноименных зарядов. Для перемещения пластин до прямого контакта нужно выполнить соответствующую работу.

Энергия поля плоского конденсатора

Для упрощения можно рассмотреть пример с перемещением разноименно заряженных пластин. Сформированная сила притяжения (F) будет измеряться величиной заряда (q) и напряженностью поля (E) между соответствующими обкладками:

Так как E = q/(2*e0*S), несложно получить выражение для значения силового взаимодействия:

где:

  • e0 – это электрическая постоянная = 8,854 * 10-12 Ф*м-1;
  • S – площадь пластин.

Работа (A) равна произведению силы на пройденное расстояние (d), поэтому W (энергия плоского конденсатора) = A = F * d = d *q2/(2*e0*S). Емкость (С) определяется, как C = d /(e0*S). Следующими преобразованиями можно получить итоговое выражение:

  • W = q2/(2*C);
  • q = C * U;
  • энергия конденсатора формула:

Для чего знать энергию

Даже приблизительный расчет этого параметра для многих радиотехнических схем не нужен. Функциональный фильтр, например, создают только с учетом емкости. Однако в некоторых устройствах энергия заряженного конденсатора имеет определяющее значение.

Блок питания фотовспышки

Комплект конденсаторов накапливает достаточное количество энергии для освещения объекта съемки.

Величина энергии

Как будет вычисляться накопленный энергетический потенциал, разобраться можно с помощью показанного на снимке блока фотовспышки. Следует напомнить о том, что для увеличения емкости применяют параллельное соединение (Cобщ = C1 + C2 +…+ Cn). При последовательном варианте пропорциональная зависимость обратная (1/Cобщ = 1/C1 + 1/C2 +…+ 1/Cn).

Расчет:

  • 2 емкости по 400 мкФ (Cобщ = C1 + C2 = 400 + 400 = 800 мкФ);
  • источник питания будет заряжать элемент напряжением 300 В;
  • энергия конденсатора W = ½ *C * U2 = ½ * 800 * 10-6 * 300 = 0,12 джоуля.

Виды конденсаторов

Основные технические параметры этих изделий во многом зависят от проницаемости и других свойств промежутка между обкладками. В частности, проходящий через этот слой ток определяет длительность сохранения запаса энергии. По материалу диэлектрика различают следующие виды конденсаторов:

  • вакуумный;
  • воздушный (газовый);
  • жидкий;
  • твердый неорганический (слюда)/ органический (бумажный);
  • полимерный;
  • электролитический;
  • оксидный.

Для улучшения потребительских параметров используют различные комбинации представленных материалов.

Серийные модели постоянной емкости рассчитаны на сохранение исходных характеристик на протяжении всего срока службы. Также выпускают переменные модели. Для увеличения (уменьшения) емкости применяют:

  • механический ручной или электрический привод;
  • изменение напряжения (варикапы) или температуры.

Миниатюрные подстроечные конденсаторы нужны для точной настройки электрической схемы

Также применяют классификацию по форме и взаимному расположению обкладок. Специальные конденсаторы (пусковые, высоковольтные и др.) создают для решения отдельных задач.

Использование конденсаторов

Подученное соотношение величин характерно для всех типов конденсаторов. Его используют для того, чтобы определить накопленную энергию при подключении к источнику питания. Измерить напряжение на выводах можно с помощью мультиметра. Кроме емкости, на корпусе конденсатора указывают другие важные параметры:

  • рабочий ток;
  • номинальное напряжение;
  • диэлектрический материал;
  • тип элемента.

К сведению. На миниатюрных деталях места для размещения всех данных недостаточно. Применяют систему сокращенных кодировок. Необходимые сведения уточняют в сопроводительной документации либо на официальном сайте производителя.

В следующем перечне приведены примеры электротехнических схем и устройств, которые создают с применением конденсаторов:

  • частотный (сглаживающий) фильтр;
  • колебательный контур;
  • накопитель энергии для формирования мощного импульса (лазер, фотовспышка);
  • ограничитель силы тока (компенсатор подключаемой реактивной нагрузки);
  • измерение перемещений (изменение емкости при сближении/ отдалении обкладок).

Для автоматизированного расчета типовой схемы можно использовать специализированный калькулятор онлайн. Следующий пример демонстрирует расчет корректного подключения электродвигателя:

  • соединение обмоток – треугольник;
  • мощность потребления – 1 200 Вт;
  • напряжения сети – 220 В;
  • cos ϕ – 0,9;
  • КПД – 85%;
  • емкость рабочего (пускового) конденсатора – 52 (130) мкФ.

Конденсатор или аккумулятор

Использование таких изделий вместо АКБ ограничено незначительной емкостью серийных электролитических моделей. Ситуация изменилась с появлением ионисторов, которые отличаются увеличенной емкостью (до десятков тыс. фарад). Ниже перечислены особенности, которые следует учесть при сравнении конденсаторов и аккумуляторных батарей.

Преимущества ионисторов:

  • длительное сохранение хороших рабочих параметров;
  • широкий температурный диапазон (от -40°C до + 60°C);
  • надежность;
  • простота обращения;
  • разумная стоимость.

Недостатки:

  • быстрый самостоятельный разряд (15-25% за 24 часа);
  • сравнительно небольшой запас энергии (1-1,5 мА на 1 Ф).

Для правильного применения конденсаторов требуется точный предварительный расчет. Как накопители энергии, эти элементы применяют в комплекте с солнечными батареями. В таких наборах при непрерывной эксплуатации обозначенные потери можно признать приемлемыми. Если придется отключить источник питания на длительный срок, предпочтительным выглядит использование АКБ.

Видео

Источник

Ёмкость конденсатора

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Ёмкость цилиндрического конденсатора :

Ёмкость плоского конденсатора :

Емкость сферического конденсатора :

В формуле мы использовали :

C — Электрическая ёмкость (ёмкость конденсатора)

U — Потенциал проводника (Напряжение)

— Относительная диэлектрическая проницаемость

Источник

Переменный ток. Резистор, конденсатор и катушка в цепи переменного тока.

Этот пассивный элемент применяют для создания различных электротехнических схем, защитных и блокирующих устройств. Конденсатор в цепи переменного тока накапливает и возвращает энергию. С помощью этой публикации можно выяснить назначение и функции популярного радиокомпонента, изучить основные определения и особенности практического применения.

Электрические параметры, формулы для расчета и схема измерений при подключении конденсатора к источнику питания переменного тока

Свойства и выполняемые функции

Как подобрать конденсатор

Отмеченные накопительные способности определяются размерами пластин и расстоянием между ними, диэлектрическими характеристиками промежуточного слоя. Заряд сохраняется после отключения источника питания. Если подсоединить нагрузку, энергия может выполнять необходимые полезные функции.

На рисунке показано устройство, которое «вырезает» небольшой участок спектра. Показанная на графике рабочая частота определяется параметрами цепочки, составленной из конденсатора и катушки индуктивности. В данном примере выполняются функции фильтрации входного сигнала.

Понятие полярности для конденсаторов и их выход из строя

Для улучшения рабочих параметров некоторые компоненты этой категории создают с применением промежуточного материала, пропитанного электролитом. Дополнительные слои создают из оксидов металлов и диэлектриков.

Конструкция электролитического конденсатора

Конденсатор — для чего нужен, устройство и принцип работы

Эти изделия подключают с обязательным соблюдением полярности. Специальная маркировка на корпусе предупреждает пользователей о наличии соответствующего ограничения. При ошибке в процессе монтажа конденсатор будут выведен из строя первым подключением. Кипение электролита может провоцировать повышенное напряжение.

К сведению. Насечками на крышке и предохранительным клапаном уменьшают разрушительный эффект при возникновении аварийной ситуации.

Емкостное сопротивление

Формула мощности электрического тока

Если подключить генератор синусоидального сигнала, с помощью осциллографа можно регистрировать увеличение силы тока по мере роста частоты. В ходе эксперимента нужно поддерживать одинаковую амплитуду на входе.

В следующих разделах публикации рассказано о том, почему происходят отмеченные явления.

Понятие ёмкости

Рассмотренная выше схема стандартной конструкции подразумевает влияние следующих параметров на способность накопления определенного заряда ( q ):

  • площади (S) рабочих пластин или обкладок;
  • расстояния (d) между этими функциональными компонентами;
  • диэлектрических характеристик слоя (e – проницаемость).

Выяснив значения перечисленных величин, можно рассчитать напряженность:

Накопительные свойства (емкость) определяет следующая формула:

С= (e * S)/ d = q/U, где U – напряжение.

Для случая с переменным током нужно учесть изменение параметров за определенный интервал времени:

С учетом представленных выше зависимостей после простых математических преобразований можно создать алгоритм расчета силы тока, который будет проходить по цепи:

I = (C * ΔU)/Δt = f * C * Uo cos f * t = Io * sin (f * t + 90), где f – частота сигнала.

Векторное представление

Для наглядности процессов основные электрические параметры удобно представлять в векторной форме. Чтобы учесть замедление процессов обмена энергией, устанавливают понятие емкостного сопротивления (Xc).

Пояснение общих зависимостей

График и векторное представление демонстрируют отставание напряжения от тока, который будет течь в цепи на 90° (π/2).

К сведению. Обратный эффект наблюдается, если включить в схему катушку индукции. В этом случае напряжение будет опережать ток по фазе на аналогичный угол (90°).

Приведенные особенности подтверждают наличие реактивных компонентов конденсаторов и катушек, соответственно. В упрощенном виде сопротивление Хс выражается обратной зависимостью от частоты и емкости:

Представленную формулу можно использовать для расчета фильтров, колебательных контуров и других схем.

График ёмкостного сопротивления

Может ли через конденсатор протекать постоянный ток, отмечено выше. Наличие слоя диэлектрика предотвращает свободное протекание электронов через этот участок. Такой материал только накапливает заряды, но при одинаковых потенциалах эквивалентен разрыву проводника. При работе с переменным сигналом ток смещения в переделах этой зоны выполняет функцию «соединения» цепи.

Зависимость реактивного сопротивления конденсатора от частоты сигнала

  • отсутствие колебательных процессов (f=0) соответствует уменьшению до нуля проводимости, что аналогично разрыву цепи;
  • при увеличении емкости сопротивление конденсатора уменьшается;
  • чем выше частота, тем лучше проводимость.

Работа (мощность) в ёмкостной нагрузке

Выше отмечена цикличность энергетического обмена между источником переменного сигнала и подключенным конденсатором.

Диаграммы демонстрируют процессы в конденсаторе на примере сжимания/ растяжения пружины внешней силой. В идеальных условиях энергетические потери отсутствуют. Однако в реальной ситуации нужно учесть потребление мощности активным сопротивлением соединительных проводов, иных компонентов схемы. Уменьшение КПД объясняется ухудшением функционального состояния диэлектрика.

Прочие параметры

Для уточненных расчетов применяют эквивалентную схему изделия со следующими компонентами:

  • емкость;
  • электрические сопротивления изоляционного слоя, контактных и проводящих элементов конструкции;
  • индуктивные реактивные составляющие.

К сведению. После отключения нагрузки на выводах конденсатора фиксируется небольшой рост напряжения (абсорбция заряда). Также существует зависимость рабочих параметров от температуры.

Не все X7R созданы одинаковыми.

Так как изменение постоянной времени моей RC-цепочки было куда больше, чем это могло быть объяснено температурным коэффициентом ёмкости, мне пришлось копать глубже. Глядя на то, насколько уплыла ёмкость моего конденсатора от приложенного к нему напряжения я был очень удивлён. Результат был очень далёк от того номинала, который был впаян. Я брал конденсатор на 16В для работы в цепи 12В. Даташит говорил, что мои 4,7мкФ превращаются в 1,5мкФ в таких условиях. Это
объясняло мою проблему.

Даташит также говорил, что если только увеличить типоразмер с 0805 до 1206, то результирующая ёмкость в тех же условиях будет уже 3,4мкФ! Этот момент требовал более пристального изучения.

Я нашёл, что сайты Murata® и TDK® имеют классные инструменты для построения графиков изменения ёмкости конденсаторов в зависимости от различных условий. Я прогнал через них керамические конденсаторы на 4,7мкФ для разных типоразмеров и номинальных напряжений. На рисунке 1

показаны графики построенные Murata. Были взяты конденсаторы X5R и X7R типоразмеров от 0603 до 1812 на напряжение от 6,3 до 25В.

Рисунок 1. Изменение ёмкости в зависимости от приложенного напряжения для выбранных конденсаторов.

Обратите внимание, что во-первых, при увеличении типоразмера уменьшается изменение ёмкости в зависимости от приложенного напряжения, и наоборот.

Второй интересный момент состоит в том, что в отличии от типа диэлектрика и типоразмера, номинальное напряжение похоже ни на что не влияет. Я ожидал бы, что конденсатор на 25В под напряжением 12В меньше изменит свою ёмкость, чем конденсатор на 16В под тем же напряжением. Глядя на график для X5R типоразмера 1206 мы видим, что конденсатор на 6,3В на самом деле ведёт себя лучше, чем его родня на большее номинальное напряжение.

Если взять более широкий ряд конденсаторов, то мы увидим, что это поведение характерно для всех керамических конденсаторов в целом.

Третье наблюдение состоит в том, что X7R при том же типоразмере имеет меньшую чувствительность к изменениям напряжения, чем X5R. Не знаю, насколько универсально это правило, но в моём случае это так.

Используя данные графиков, составим таблицу 2

, показывающую насколько уменьшится ёмкость конденсаторов X7R при 12В.

Таблица 2. Уменьшение ёмкости конденсаторов X7R разных типоразмеров при напряжении 12В.

Типоразмер Ёмкость, мкФ % от номинала
0805 1,53 32,6
1206 3,43 73,0
1210 4,16 88,5
1812 4,18 88,9
Номинал 4,7 100

Мы видим устойчивое улучшение ситуации по мере роста размера корпуса пока мы не достигнем типоразмера 1210. Дальнейшее увеличение корпуса уже не имеет смысла.
В моём случае я выбрал наименьший возможный типоразмер компонентов, поскольку этот параметр был критичен для моего проекта. В своём невежестве я полагал что любой конденсатор X7R будет так же хорошо работать, как другой с тем же диэлектриком — и был неправ. Чтобы RC-цепочка заработала правильно я должен был взять конденсатор того же номинала, но в большем корпусе.

Конденсатор в цепях электрического тока

Следующие эксперименты можно проводить в домашней лаборатории. Они демонстрируют, как будет работать конденсатор с разными источниками питания.

Цепь постоянного тока

При подключении к аккумулятору накопление энергии происходит. Однако протекание тока в цепи блокирует диэлектрик.

Опыт с лампочкой

Цепь переменного тока

Собрав простую схему, можно увидеть отличия входного и выходного сигнала. По мере увеличения частоты на определенном уровне амплитуды становятся равными, а фазы совпадут.

Изучение параметров синусоидального сигнала

Напряжение на конденсаторе в цепи синусоидального тока

Если приложенное к конденсатору напряжение не меняется во времени, то заряд q=CU на одной его обкладке и заряд –q=-Cu на другой (С-ёмкость конденсатора) неизменны и ток через конденсатор не проходит ( ). Если же напряжение на конденсаторе меняется во времени, например по синусоидальному закону

то по синусоидальному закону будет меняться заряд q конденсатора:

и конденсатор будет периодически перезаряжаться. Периодическая перезарядка конденсатора сопровождается протеканием через него синусоидального тока

Из сопоставления (2-34) и (2-36) видно, что ток через конденсатор опережает по фазе напряжение на конденсаторе на 90º. На векторной диаграмме вектор тока направлен по вещественной оси комплексной плоскости, а вектор напряжения на конденсаторе направлен в отрицательном направлении мнимой оси.

На рис. 2-16 изображен конденсатор емкостью С, по которому протекает синусоидальный ток .

Рис. 2-16. Конденсатор в цепи синусоидального тока

На рис. 2-17 изображена векторная диаграмма при протекании через конденсатор синусоидального тока.

Рис. 2-17. Векторная диаграмма

Таким образом, при протекании синусоидального тока через конденсатор вектор тока опережает вектор напряжения на конденсаторе на 90º.

Из выражения (2-36) запишем амплитуду тока :

Ясно, что выражение в знаменателе есть некоторое сопротивлению согласно закону Ома:

которое называют емкостным сопротивлением конденсатора.

Проверим размерность Xc:

Таким образом, конденсатор оказывает переменному току сопротивление . Оно обратно пропорционально угловой частоте ω.

Графики мгновенных значений U,I,p приведены на рис. 2-18.

Рис. 2-18. Графики мгновенных значений тока , напряжения и

Во вторую и все чётные четверти периода мгновенная мощность р положительная, и в этой четверти периода энергия от источника передаётся конденсатору и идёт на создание электрического поля конденсатора.

В первую и все нечётные четверти периода мгновенная мощность р отрицательная, и энергия, занесённая в электрическое поле конденсатора, возвращается источнику.

Мгновенная мощность положительная, когда напряжение и ток имеют одинаковые знаки, и отрицательная – когда напряжение и ток имеют противоположные знаки.

Мгновенная мощность р равна нулю, когда либо ток , либо напряжение проходят через нуль. Это происходит каждую четверть, поэтому мгновенная мощность изменяется с двойной частотой питающей сети.

Таким образом, в конденсаторе не происходит потребление энергии от источника, а происходит накапливание энергии в электрическом поле конденсатора в чётные четверти периода и возврат накопленной энергии источнику в нечётные четверти периода.

Напомним, что элемент, не потребляющий энергию от источника, называется реактивным и обладает реактивным сопротивлением. То есть конденсатор – это тоже реактивный элемент, обладающий реактивным сопротивлением .

Диэлектрик, находящийся между обкладками конденсатора, всегда неидеален, то есть в нем всегда есть некоторые потери энергии, которые относительно малы и ими часто можно пренебречь. Если требуется учесть их в расчёте , то конденсатор заменяют схемой замещения (рис. 2-19), в которой параллельно ёмкости присоединено активное сопротивление R, потери энергии в котором имитируют потери энергии в реальном диэлектрике.

Рис. 2-19. Схема замещения реального конденсатора

На рис. 2-20 приведена векторная диаграмма для реального конденсатора.

Включение в цепи синусоидальной ЭДС

Конденсаторы в цепи постоянного тока не работают динамично. Поэтому имеет смысл изучать электрические параметры при подключении генератора синусоидального сигнала. В этой ситуации, кроме энергетических процессов, можно проверить частотные зависимости.

Виды включений

Параллельный способ соединения увеличивает емкость:

Для уменьшения основного функционального параметра используют последовательную схему:

1/Собщ = 1/С1 + 1/С2.

При подключении к источнику переменного тока конденсатор подойдет для решения следующих задач:

  • устранение постоянной компоненты сигнала;
  • ухудшение проводимости для определенного частотного диапазона;
  • настройка частоты колебательного контура и других радиотехнических схем.

При необходимости с помощью конденсатора можно гасить паразитные колебания, убирать импульсные помехи.

Простейший тип включения

Представленные выше формулы по току и напряжению можно изобразить следующим образом:

  • I = Im cos (f*t + π/2);
  • U = Uo * cosf*t.

Пояснения к описанию циклов

В простой схеме включения следует отметить следующие этапы рабочего процесса:

  1. увеличение напряжения с накоплением заряда током максимальной силы;
  2. уменьшение i(t) до нуля с одновременным достижением максимума Um;
  3. снижение U c одновременным разрядом конденсатора;
  4. достижение уровня Im c U =0.

Общий подход к выбору изделий и порядку расчетов корректируют с учетом целевого назначения. Если отсутствуют повышенные требования к точности, можно применить представленные параметры и формулы. Дополнительные данные можно получить из сопроводительной документации, на официальных сайтах производителей радиоэлектронных компонентов.

Вопросы и задания для самоконтроля

Вопросы и задания для самоконтроля

  1. Что представляет собой конденсатор и от чего зависит его ёмкость?
  2. Выведите формулы ёмкости плоского, цилиндрического и сферического конденсаторов.
  3. Как изменяется разность потенциалов на обкладках конденсатора при его зарядке и разрядке?
  4. Какой ток называется квазистационарным?
  5. Выведите формулы электроёмкости батареи последовательно и параллельно соединённых конденсаторов
  6. Что такое время релаксации?
  7. Объясните принцип работы экспериментальной установки.
  8. Нарисуйте графики зависимости силы тока и напряжения от времени при зарядке и разрядке конденсатора.
  9. Соберите на мониторе такую цепь, состоящую из источника тока, двух ламп, выключателя и соединительных проводов, чтобы с выключением лампы в одной цепи загоралась лампа в другой.
  10. Определите заряд, который пройдёт через гальванометр в схеме, показанной на рис. 2, при замыкании ключа.
  11. Конденсатор ёмкости С = 300 пФ подключается через сопротивление R =500 Ом к источнику постоянного напряжения U0. Определите: а) время, по истечению которого напряжение на конденсаторе составит 0,99 U0; в) количество тепла, которое выделится на этом сопротивлении при разрядке конденсатора за это же время.
  12. Имеется ключ, соединительные провода и две электрические лампочки. Составьте на мониторе электрическую схему включения в сеть этих лампочек, которая должна удовлетворять следующему условию: при замкнутом ключе горит только первая лампочка, при размыкании ключа первая гаснет, а вторая загорается.
  13. Конденсатору ёмкостью С сообщают заряд q, после чего обкладки конденсатора замыкают через сопротивление R. Определите: а) закон изменения силы тока, текущего через сопротивление; б) заряд, прошедший через сопротивление за время t; в) количество тепла, выделившееся в сопротивлении за это время.
  14. Определите количество тепла, выделившегося в цепи (рис. 4-6) при переключении ключа К из положения 1 в положение 2. Параметры цепи обозначены на рисунках.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector